Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải pt :
\(\left(8x-4x^2-1\right)\left(x^2+2x+1\right)=4\left(x^2+x+1\right)\)
Không nhân hết ra nhé!
Biến đổi :
\(4\sin x+3\cos x=A\left(\sin x+2\cos x\right)+B\left(\cos x-2\sin x\right)=\left(A-2B\right)\sin x+\left(2A+B\right)\cos x\)
Đồng nhất hệ số hai tử số, ta có :
\(\begin{cases}A-2B=4\\2A+B=3\end{cases}\)\(\Leftrightarrow\begin{cases}A=2\\B=-1\end{cases}\)
Khi đó \(f\left(x\right)=\frac{2\left(\left(\sin x+2\cos x\right)\right)-\left(\left(\sin x-2\cos x\right)\right)}{\left(\sin x+2\cos x\right)}=2-\frac{\cos x-2\sin x}{\sin x+2\cos x}\)
Do đó,
\(F\left(x\right)=\int f\left(x\right)dx=\int\left(2-\frac{\cos x-2\sin x}{\sin x+2\cos x}\right)dx=2\int dx-\int\frac{\left(\cos x-2\sin x\right)dx}{\sin x+2\cos x}=2x-\ln\left|\sin x+2\cos x\right|+C\)
Suy ra:(3x-5)*3=4x*2
9x-15=8x
15=9x-8x
15=x
Vậy x=15(tick nha)
Lời giải:
Điều kiện \(x\geq 0\)
\(\text{PT}\Leftrightarrow 2(x^2+2x+4)=3\sqrt{4x(x^2+4)}\)
Áp dụng bất đẳng thức AM-GM:
\(2(x^2+2x+4)=3\sqrt{4x(x^2+4)}\leq 3\left (\frac{4x+x^2+4}{2}\right)\)
\(\Rightarrow 4(x^2+2x+4)\leq 3(x^2+4x+4)\Leftrightarrow (x-2)^2\leq 0\)
Ta biết rằng \((x-2)^2\geq 0\forall x\in\mathbb{R}\) nên dấu bằng xảy ra khi \(x=2\)
Vậy \(x=2\) là nghiệm của phương trình.
ta có \(5^{x^2}\ge1\) với mọi x
mà \(cos^4x+sin^4x=1-2sin^2xcos^2x\le1\) với mọi x
dầu bằng xảy ra khi \(5^{x^2}=1\Rightarrow x^2=0\Rightarrow x=0\)
khi x=0 thì \(cos^4x+sin^4x=1\)
vậy nghiệm của pt x=0