Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : x4 - y4
= (x2)2 - (y2)2
= (x2 - y2)(x2 + y2)
= (x - y)(x + y)(x2 + y2)
b) 9(x - y)2 - 4(x + y)2
= [3(x - y) - 4(x + y)][3(x - y) + 4(x + y)]
= [3x - 3y - 4x - 4y][3x - 3y + 4x + 4y]
= (-x - 7y)(x + y)
e.\(x^4+2x^2+1=\left(x^2+1\right)^2\)
c.\(x^2-9y^2=\left(x-3y\right)\left(x+3y\right)\)
f.\(-x^2-2xy-y^2+1=-\left[\left(x+y\right)^2-1\right]=-\left(x+y-1\right)\left(x+y+1\right)=\left(x-y+1\right)\left(x+y+1\right)\)
g.\(x^3-x^2-x+1==x^2\left(x-1\right)-\left(x-1\right)=\left(x-1\right)\left(x^2-1\right)=\left(x-1\right)^2\left(x+1\right)\)
h.\(\left(x+y\right)^2-2\left(x+y\right)+1=\left(x+y-1\right)^2\)
i.\(\left(x+y\right)^3-x^3-y^3=\left(x+y\right)^3-\left(x^3+y^3\right)=\left(x+y\right)^3-\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=\left(x+y\right)\left[\left(x+y\right)^2-\left(x^2-xy+y^2\right)\right]=\left(x+y\right)\left(x^2+2xy+y^2-x^2+xy-y^2\right)\)
\(=3xy\left(x+y\right)\)
tíck mình nha bn thanks !!!!!
a. (3x-4)2=9(x-1)(x+1)
<=> 9x2-24x+16=9x2-9
<=> -24x=-25
<=> x=\(\dfrac{25}{24}\)
Vậy S=\(\left\{\dfrac{25}{24}\right\}\)
b. (4x-5)2-4(x-2)2=0
<=> (4x-5)2-(2x-4)2=0
<=> (4x-5-2x+4)(4x-5+2x-4)=0
<=> (2x-1)(6x-9)=0
<=> \(\left[{}\begin{matrix}2x-1=0\\6x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy S=\(\left\{\dfrac{1}{2};\dfrac{3}{2}\right\}\)
c. |x2-x|= -2x
Ta có: |x2-x|=x2-x khi x2-x\(\ge0\) hay x\(\ge1\)
=> x2-x= -2x
<=> x2-x+2x=0
<=> x2+x=0
<=> x(x+1)=0
<=> \(\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\) (không thỏa mãn điều kiện x\(\ge1\))
Lại có: |x2-x|= x-x2 khi x2-x<0 hay x<1
=> x-x2= -2x
<=> x-x2+2x=0
<=> 3x-x2=0
<=> x(3-x)=0
x=0 (thỏa mãn điều kiện x<1)
hoặc: 3-x=0<=> x=3 (không thỏa mãn điều kiện x<1)
Vậy S=\(\left\{0\right\}\)
d. \(\dfrac{x+3}{x-3}+\dfrac{48x^3}{9-x^2}=\dfrac{x-3}{x+3}\)
ĐKXĐ: \(x\ne\pm3\)
Ta có:\(\dfrac{x+3}{x-3}+\dfrac{48x^3}{9-x^2}=\dfrac{x-3}{x+3}\)
<=> \(\dfrac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}-\dfrac{48x^3}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x-3\right)^2}{\left(x-3\right)\left(x+3\right)}\)
=> x2+6x+9-48x3=x2-6x+9
<=> 12x-48x3=0
<=> 12x(1-4x2)=0
<=> 12x(1-2x)(1+2x)=0
<=> \(\left[{}\begin{matrix}x=0\\1-2x=0\\1+2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=0,5\\x=-0,5\end{matrix}\right.\) (thỏa mãn ĐKXĐ)
Vậy S=\(\left\{0;\pm0,5\right\}\)
a ) ( 3x - 4 )2 = 9 (x-1)(x+1)
\(\Leftrightarrow\) 9x2 - 24x + 16 = 9 ( x2 - 1 )
\(\Leftrightarrow\) 9x2 - 24x + 16 = 9x2 - 9
\(\Leftrightarrow\) 9x2 - 24x - 9x2 = - 9 - 16
\(\Leftrightarrow\) -24x = -24
\(\Leftrightarrow\) x = 1
Vậy phương trình có nghiệm x = 1 .
3) \(x^2-7x+6=0\)
\(\Leftrightarrow x^2-6x-x+6=0\)
\(\Leftrightarrow x\left(x-6\right)-\left(x-6\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=1\end{matrix}\right.\)
S=\(\left\{6;1\right\}\)
\(\)
câu 20
\(\)\(C_{20}=\left(a^2+1\right)^2-4a^2=\left(a^2+1\right)^2-\left(2a\right)^2=\left[\left(a^2+1\right)-2a\right]\left[\left(a^2+1\right)+2a\right]\)\(C_{20}=\left[a^2-2a+1\right]\left[a^2+2a+1\right]=\left(a-1\right)\left(a-1\right)\left(a+1\right)\left(a+1\right)\)
\(C_{20}=\left(a-1\right)\left(a-1\right)\left(a+1\right)\left(a+1\right)\)
giải
a.(2x-3)(4x^2+6x+9)-2x(4x^2-1)
=8x^3+12x^2+18x-12x^2-18x-27-8x^3+2x
=2x-27
bài 1
b.(x+y)2+2(x+y)(x-y)+(x-y)2
= [(x+y)+(x-y)]2
= (x+y-x+y)2
= (2y)2
= 4y2
bài 2
a. 2x2y+4xy+2y
=2y(x2+2x+1)
=2y(x+1)2
b.9x2+6xy-4z2+y2
= (9x2+6xy+y2)-4z2
= (3x+y)2-(2z)2
= (3x+y-2z)(3x+y+2z)
a) x2 - 9 + (x - 3)
= (x- 3)(x + 3) + (x - 3)
= (x - 3)(x + 3 + 1)
= (x - 3)(x + 4)
b) x3 - 4x2 + 4x - xy2
= x(x2 - 4x + 4 - y2)
= \(x\left [ (x - 2)^{2} - y^{2}\right ]\)
= x(x - 2 - y)(x - 2 + y)
= x(x - y - 2)(x + y - 2)
c) x3 - 4x2 + 12x - 27
= x3 - 27 - 4x2 + 12x
= (x - 3)(x2 + 3x + 9) - 4x(x - 3)
= (x - 3)(x2 + 3x + 9 - 4x)
= (x - 3)(x2 - x + 9)
e) 5x3 - 5x2y - 10x2 + 10xy
= 5x(x2 - xy - 2x + 2y)
= \(5x\left [ x(x - y) - 2(x - y) \right ]\)
= 5x(x - y)(x - 2)
câu f pn coi lại mũ của 3x nha nếu mũ 2 thì lm như dưới
f) 3x2 - 6xy + 3y2 - 12z2
= 3(x2 - 2xy + y2 - 4z2)
= \(3\left [ (x - y)^{2} - (2z)^{2} \right ]\)
= 3(x - y - 2z)(x - y + 2z)
pn coi lại đề câu d với f nhé