Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện:\(-2\le x\le2\)
Ta có: \(10-3x=\left(2+x\right)+4\left(2-x\right)\)
Đặt \(a=\sqrt{2+x}\ge0\)
\(b=\sqrt{2-x}\ge0\)
Pt trở thành:\(3a-6b+4ab=a^2+4b^2\)
Chuyển vế cùng 1 vế sau đó nhóm lại và đặt nhân tử chung
\(\left(a^2-2ab\right)-\left(2ab-4b^2\right)-\left(3a-6b\right)=0\)
\(a\left(a-2b\right)-2b\left(a-2b\right)-3\left(a-2b\right)=0\)
\(\left(a-2b\right)\left(a-2b-3\right)=0\)
- Với a-2b=0
\(\Rightarrow\sqrt{2+x}-2\sqrt{2-x}=0\)
\(\Rightarrow x=\frac{6}{5}\left(tm\right)\)
- Với a-2b-3=0
\(\Rightarrow\sqrt{2+x}-2\sqrt{2-x}-3=0\)
=> vô nghiệm
Vậy pt trên có nghiệm là \(x=\frac{6}{5}\)
Câu 1:
Ta có 2 vế luôn dương nên bình phương 2 vế được:
\(2x^2+4=5x^3+5\)
\(5x^3-2x^2-1=0\)
<=> x = 0,7528596306
Giải phương trình sau:
√3x2−5x+1−√x2−2=√3(x2−x−1)−√x2−3x+4
ĐKXD: \(3x^2-7x+5\ge0;x^2-x+4\ge0;3x^2-5x+1\ge0\)
Phương trình tương đương
\(\sqrt{3x^2-7x+5}-\sqrt{3x^2-5x+1}=\sqrt{x^2-2}-\sqrt{x^2-x+4}\)
\(\left(=\right)\frac{-2\left(x-2\right)}{\sqrt{3x^2-7x+5}+\sqrt{3x^2-5x+1}}=\frac{x-2}{\sqrt{x^2+2}+\sqrt{x^2-x+4}}\)
\(\left(=\right)\left(x-2\right)\left(\frac{-2}{\sqrt{3x^2-7x+5}+\sqrt{3x^2-5x+1}}-\frac{1}{\sqrt{x^2+2}+\sqrt{x^2-x+4}}\right)=0\)
Dễ đàng đánh giá Trường hợp còn lại nhỏ hơn 0. Từ đó suy ra x=2(thỏa)
ĐK: \(x\ge1\)
Đặt\(\left\{{}\begin{matrix}\sqrt{x+4}=a\\\sqrt{x-1}=b\end{matrix}\right.\)\(\left(a\ge\sqrt{5},b\ge0\right)\)
\(\Rightarrow a^2-b^2=5\)\(\Leftrightarrow\left(a-b\right)\left(a+b\right)=5\)(1)
Mặt khác,\(PT\Leftrightarrow\)\(\left(a-b\right)\left(ab+1\right)=5\)(2)
Lấy \(\left(2\right)-\left(1\right)\Rightarrow\) \(\left(a-b\right)\left(a-1\right)\left(b-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a=b\\a=1\left(l\right)\\b=1\left(tm\right)\end{matrix}\right.\)
Đến đây không biết giải tiếp, anh lo nhé :D
Bạn coi lại đề câu a và câu c
b/ Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+3x+5}=a>0\\\sqrt{2x^2-3x+5}=b>0\end{matrix}\right.\) \(\Rightarrow a^2-b^2=6x\Rightarrow3x=\frac{a^2-b^2}{2}\)
Phương trình trở thhành:
\(a+b=\frac{a^2-b^2}{2}\Leftrightarrow2\left(a+b\right)=\left(a+b\right)\left(a-b\right)\)
\(\Leftrightarrow a-b=2\Rightarrow a=b+2\)
\(\Leftrightarrow\sqrt{2x^2+3x+5}=\sqrt{2x^2-3x+5}+2\)
\(\Leftrightarrow2x^2+3x+5=2x^2-3x+5+4+4\sqrt{2x^2-3x+5}\)
\(\Leftrightarrow3x-2=2\sqrt{2x^2-3x+5}\) (\(x\ge\frac{2}{3}\))
\(\Leftrightarrow9x^2-12x+4=4\left(2x^2-3x+5\right)\)
\(\Leftrightarrow x^2=16\Rightarrow x=4\)
@Akai Haruma, @Nguyễn Việt Lâm, @Nguyễn Thị Diễm Quỳnh, @Hoàng Tử Hà, @Bonking
Giúp mk vs!
\(\sqrt[]{5-x^6}+\sqrt[]{3x^4-2}=1\left(1\right)\)
Điều kiện \(\left\{{}\begin{matrix}5-x^6\ge0\\3x^4-2\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x^6\le5\\x^4\ge\dfrac{2}{3}\end{matrix}\right.\) \(\) \(\Rightarrow\left\{{}\begin{matrix}-\sqrt[6]{5}\le x\le\sqrt[6]{5}\\\left[{}\begin{matrix}x\le-\sqrt[4]{\dfrac{2}{3}}\\x\ge\sqrt[4]{\dfrac{2}{3}}\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-\sqrt[6]{5}\le x\le-\sqrt[4]{\dfrac{2}{3}}\\\sqrt[4]{\dfrac{2}{3}}\le x\le\sqrt[6]{5}\end{matrix}\right.\) \(\left(2\right)\)
\(\Rightarrow\left(1\right)\) thỏa \(\Leftrightarrow\left\{{}\begin{matrix}5-x^6\le1\\3x^4-2\le1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^6\le4\\x^4\le1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le\sqrt[3]{2}\\0\le x\le1\end{matrix}\right.\) \(\Leftrightarrow0\le x\le1\left(3\right)\)
\(\left(2\right),\left(3\right)\Rightarrow\sqrt[4]{\dfrac{2}{3}}\le x\le1\) \(\Rightarrow\sqrt[4]{\dfrac{2}{3}}< x< 1\)
thanks