K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2018

      \(x\left(x-1\right)\left(x+4\right)\left(x+5\right)=84\)

\(\Leftrightarrow\)\(\left(x^2+4x\right)\left(x^2+4x-5\right)-84=0\)

Đặt:     \(x^2+4x=t\)ta có:

              \(t\left(t-5\right)-84=0\)

  \(\Leftrightarrow\)\(t^2-5t+\frac{25}{4}-\frac{361}{4}=0\)
  \(\Leftrightarrow\)\(\left(t-\frac{5}{2}\right)^2-\frac{361}{4}=0\)

  \(\Leftrightarrow\)\(\left(t-\frac{5}{2}-\frac{19}{2}\right)\left(t-\frac{5}{2}+\frac{19}{2}\right)=0\)

  \(\Leftrightarrow\)\(\left(t-12\right)\left(t+7\right)=0\)

  \(\Leftrightarrow\)\(\orbr{\begin{cases}t-12=0\\t+7=0\end{cases}}\)

Đến đây bn thay trở lại rồi tìm   x   nhé

8 tháng 2 2017

\(\left(x-1\right)\left(x+5\right)=x^2+4x-5\)(1)

\(x\left(x+4\right)=x^2+4x\)(2)

Lấy (1) nhân (2) \(\Leftrightarrow y.\left(y-5\right)=84\Leftrightarrow y^2-5y+\left(\frac{5}{2}\right)^2=84+\frac{25}{4}=\left(\frac{19}{2}\right)^2\)

\(\orbr{\begin{cases}y=\frac{5-19}{2}=-7\left(loai\right)\\y=\frac{5+19}{2}=12\end{cases}}\) 

\(x^2+4x=12\Leftrightarrow\left(x+2\right)^2=16\Rightarrow\orbr{\begin{cases}x=-6\\x=2\end{cases}}\)

15 tháng 1 2019

 x(x - 1)(x + 4)(x + 5) = 84 

<=> x(x + 4)(x - 1)(x + 5) = 84 

<=> (x² + 4x)(x² + 4x - 5) - 84 = 0 

Đặt t = x² + 4x ta có 

t(t - 5) - 84 = 0 

<=> t² - 5t - 84 = 0 

<=> t² + 7t - 12t - 84 = 0 

<=> t(t + 7) - 12(t + 7) = 0 

<=> (t - 12)(t + 7) = 0 

<=> t = 12 hoặc t = -7 

Với t = 12 ta có 

x² + 4x = 12 

<=> x² + 4x - 12 = 0 

<=>x² - 2x + 6x - 12 = 0 

<=> x(x - 2) + 6(x - 2) = 0 

<=> (x + 6)(x - 2) = 0 

<=> x = -6 hoặc x = 2 

Với x = - 7 ta có 

x² + 4x = -7 

<=> x² + 4x + 7 = 0 

<=> x² + 4x + 4 + 3 =0 

<=> (x + 2)² + 3 = 0 

Lại có (x + 2)² + 3 > 0 với mọi x 

=> pt vô nghiệm 

Kết luận nghiêm x = - 6 ; x = 2

15 tháng 1 2019

\(Tacó\)

\(x\left(x-1\right)\left(x+4\right)\left(x+5\right)=\left[\left(x-1\right)\left(x+5\right)\right]\left[x\left(x+4\right)\right]\)

\(=\left(x^2+4x-5\right)\left(x^2+4x\right)\)

\(Đặt:x^2+4x=t\)pt trở thành:

\(\left(t-5\right)t=84=7.12\Leftrightarrow t=12\)

\(\Leftrightarrow x^2+4x=12\Leftrightarrow x\left(x+4\right)=12=2.6\Leftrightarrow x=2\)

\(Vậy:x=2\)

6 tháng 2 2019

ta có : x^5+2x^4+3x^3+3x^2+2x+1=0

\(\Leftrightarrow\)x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0

\(\Leftrightarrow\)(x^5+x^4)+(x^4+x^3)+(2x^3+2x^2)+(x^2+x)+(x+1)=0

\(\Leftrightarrow\)x^4(x+1)+x^3(x+1)+2x^2(x+1)+x(x+1)+(x+1)=0

\(\Leftrightarrow\)(x+1)(x^4+x^3+2x^2+x+1)=0

\(\Leftrightarrow\)(x+1)(x^4+x^3+x^2+x^2+x+1)=0

\(\Leftrightarrow\)(x+1)[x^2(x^2+x+1)+(x^2+x+1)]=0

\(\Leftrightarrow\)(x+1)(x^2+x+1)(x^2+1)=0

x^2+x+1=(x+\(\dfrac{1}{2}\))^2+\(\dfrac{3}{4}\)\(\ne0\) và x^2+1\(\ne0\)

\(\Rightarrow\)x+1=0

\(\Rightarrow\)x=-1

CÒN CÂU B TỰ LÀM (02042006)

b: x^4+3x^3-2x^2+x-3=0

=>x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0

=>(x-1)(x^3+4x^2+2x+3)=0

=>x-1=0

=>x=1

11 tháng 3 2018

có ghi bị sai đề ko z ạ??, phải là 4/x^2-x+1 chứ?

bạn xem lại zùm!

11 tháng 3 2018

đề đúng mà

26 tháng 2 2018

\(\left(x-1\right)\left(x-2\right)\left(x+4\right)\left(x+5\right)+9=0\)

\(\Leftrightarrow\left(x^2-3x+4\right)\left(x^2+3x-10\right)+9=0\)

\(\Leftrightarrow\left(x^2+3x-7+3\right)\left(x^2+3x-7-3\right)+9=0\)

\(x^2+3x-7=0\)

\(x^2+3x=7\)

\(\Rightarrow x^2+2x.\frac{3}{2}+\frac{9}{4}=7+\frac{9}{4}\)

\(\Rightarrow\left(x+\frac{3}{2}\right)^2=\frac{37}{4}\)

\(\Rightarrow x+\frac{3}{2}=\pm\sqrt{\frac{37}{4}}\)

\(\Rightarrow x=\frac{-3}{2}-\sqrt{\frac{37}{4}}\)

\(\Rightarrow x=\frac{-3}{2}+\sqrt{\frac{37}{4}}\)

Vậy \(S=\left\{\frac{-3}{2}-\sqrt{\frac{37}{4}};\frac{-3}{2}+\sqrt{\frac{37}{4}}\right\}\)

a) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

Ta có: \(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)

\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{12}{\left(x-2\right)\left(x+2\right)}+\dfrac{x^2-4}{\left(x-2\right)\left(x+2\right)}\)

Suy ra: \(x^2+3x+2-5x+10=12+x^2-4\)

\(\Leftrightarrow x^2-2x+12-8-x^2=0\)

\(\Leftrightarrow-2x+4=0\)

\(\Leftrightarrow-2x=-4\)

hay x=2(loại)

Vậy: \(S=\varnothing\)

b) Ta có: \(\left|2x+6\right|-x=3\)

\(\Leftrightarrow\left|2x+6\right|=x+3\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+6=x+3\left(x\ge-3\right)\\-2x-6=x+3\left(x< -3\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-x=3-6\\-2x-x=3+6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(nhận\right)\\x=-3\left(loại\right)\end{matrix}\right.\)

Vậy: S={-3}

13 tháng 3 2016

bai 1

1 thay k=0 vao pt ta co 4x^2-25+0^2+4*0*x=0

<=>(2x)^2-5^2=0

<=>(2x+5)*(2x-5)=0

<=>2x+5=0 hoăc 2x-5 =0 tiếp tục giải ý 2 tương tự

9 tháng 3 2020

\(\Leftrightarrow\frac{1}{x}+\frac{1}{x+2}+\frac{1}{x+5}+\frac{1}{x+7}-\frac{1}{x+1}-\frac{1}{x+3}-\frac{1}{x+4}-\frac{1}{x+6}=0\)

\(\Leftrightarrow\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}-\frac{1}{\left(x+4\right)\left(x+5\right)}-\frac{1}{\left(x+6\right)\left(x+7\right)}=0\)

\(\Leftrightarrow\frac{8x+20}{x\left(x+1\right)\left(x+4\right)\left(x+5\right)}+\frac{8x+36}{\left(x+2\right)\left(x+3\right)\left(x+6\right)\left(x+7\right)}=0\).Đến đây mk chịu