K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2019

Không biết sao bạn cho thêm \(x\in Z\) vào cuối câu nhỉ? Giải pt nghiệm nguyên lai pt vô tỉ à :v

Bài làm :

\(pt\Leftrightarrow\sqrt{\left(x+1\right)\left(x+2\right)}+\sqrt{\left(x-1\right)\left(x+1\right)}+6=3\sqrt{x+1}+2\sqrt{x+2}+2\sqrt{x-1}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\\\sqrt{x-1}=b\\\sqrt{x+2}=c\end{matrix}\right.\)

\(pt\Leftrightarrow ac+ab+6=3a+2b+2c\)

\(\Leftrightarrow ac+ab+6-3a-2b-2c=0\)

\(\Leftrightarrow c\left(a-2\right)+b\left(a-2\right)-3\left(a-2\right)=0\)

\(\Leftrightarrow\left(a-2\right)\left(b+c-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2\\b+c=3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=2\\\sqrt{x-1}+\sqrt{x+2}=3\end{matrix}\right.\)

+) TH1: \(\sqrt{x+1}=2\)

\(\Leftrightarrow x+1=4\)

\(\Leftrightarrow x=3\) ( thỏa )

+) TH2: \(\sqrt{x-1}+\sqrt{x+2}=3\)

\(\Leftrightarrow x-1+x+2+2\sqrt{\left(x-1\right)\left(x+2\right)}=9\)

\(\Leftrightarrow2\sqrt{\left(x-1\right)\left(x+2\right)}=8-2x\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x+2\right)}=4-x\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=\left(4-x\right)^2\)

\(\Leftrightarrow x^2+x-2=x^2-8x+16\)

\(\Leftrightarrow9x=18\)

\(\Leftrightarrow x=2\) ( thỏa )

Vậy \(x\in\left\{2;3\right\}\).

16 tháng 8 2019

ghê à nha, em tính liên hợp nhưng thôi, thấy anh làm r:)

30 tháng 11 2019

Violympic toán 9

1 tháng 12 2019

Violympic toán 9

15 tháng 10 2016

Bạn tự tìm điều kiện xác định nhé :)

  • \(\left(\sqrt{x+3}-\sqrt{x}\right)\left(\sqrt{1-x}+1\right)=1\)

\(\Leftrightarrow\left(\sqrt{x+3}+\sqrt{x}\right)\left(\sqrt{x+3}-\sqrt{x}\right)\left(\sqrt{1-x}+1\right)=\sqrt{x+3}+\sqrt{x}\)

\(\Leftrightarrow3\left(\sqrt{1-x}+1\right)=\sqrt{x+3}+\sqrt{x}\)

Tới đây pt đã đơn giản hơn!

  • \(3x^2+2x=2\sqrt{x^2+x}-x+1\)

\(\Leftrightarrow3\left(x^2+x\right)-2\sqrt{x^2+x}-1=0\)

Đặt \(t=\sqrt{x^2+x}\) thì pt trở thành \(3t^2-2t-1=0\)

Từ đó dễ dàng giải tiếp!

  • Đặt \(a=\sqrt{x+x^2}\)\(b=\sqrt{x-x^2}\) thì ta có \(\hept{\begin{cases}a+b=x+1\\a^2+b^2=2x\end{cases}}\)

Tới đây bạn tự giải tiếp. 

15 tháng 10 2016

bạn giải câu 1 hết mình với

28 tháng 11 2019

Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen

help me, pleaseee

Cần gấp lắm ạ!

13 tháng 2 2020

a) ĐKXD:...

\(pt\Leftrightarrow\left(\sqrt{x+2}+\sqrt{x-2}\right)^2=6-2x\)

\(\Leftrightarrow\sqrt{x+2}+\sqrt{x-2}=\sqrt{6-2x}\)

Đến đây dễ rồi

13 tháng 2 2020

bước đầu bạn làm sai r. nó nằm trong căn nên ko phải bình phương nên ko thể biến đổi thành tổng bình phương được

16 tháng 6 2018

a) VT bạn bình phương rồi B.C.S sẽ được VT<=2

VP=3x^2-12x+12+2=3(x-2)^2+1>=2

Dấu = xảy ra khi x=2

16 tháng 6 2018

\(\text{Đk: }1,5\le x\le2,5\)

Áp dụng bđt cauchy ta có: 

\(\text{VT }\Leftrightarrow\frac{2x-3+1+1-2x+1}{2}=2\)

Mà: \(\text{VP}=3\left(x-2\right)^2+2\ge2\)

\(\text{ĐT}\Leftrightarrow x=2\)

\(\Rightarrow x=2\)