Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ:...
\(\Leftrightarrow10x^2+8x-2\left(3x+1\right)\sqrt{2x^2-1}-1=0\)
\(\Leftrightarrow2x^2-1-2\left(3x+1\right)\sqrt{2x^2-1}+8x^2+8x=0\)
Đặt \(\sqrt{2x^2-1}=t\ge0\)
\(\Rightarrow t^2-2\left(3x+1\right)t+8x^2+8x=0\)
\(\Delta'=\left(3x+1\right)^2-\left(8x^2+8x\right)=x^2-2x+1=\left(x-1\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=3x+1-x+1=2x+2\\t=3x+1+x-1=4x\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{2x^2-1}=2x+2\left(x\ge-1\right)\\\sqrt{2x^2-1}=4x\left(x\ge0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2-1=4x^2+8x+4\left(x\ge-1\right)\\2x^2-1=16x^2\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow x=\frac{\sqrt{6}-4}{2}\)
a)
\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=5-2x-x^2\)
\(\Leftrightarrow\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}=6-\left(x+1\right)^2\)
\(VT\ge6;VP\le6\Rightarrow VT=VP=6\)
Vậy pt có một nghiệm duy nhất là \(x=-1\)
b)
\(\sqrt{4x^2+20x+25}+\sqrt{x^2-8x+16}=\sqrt{x^2+18x+81}\)
\(\Leftrightarrow\sqrt{\left(2x+5\right)^2}+\sqrt{\left(x-4\right)^2}=\sqrt{\left(x+9\right)^2}\)
\(\Leftrightarrow\left|2x+5\right|+\left|x-4\right|=\left|x+9\right|\)
Lập bảng xét dấu ra nhé ~^o^~
a/\(\dfrac{x^2}{\sqrt{5}}-\sqrt{20}=0\Leftrightarrow\dfrac{x^2}{\sqrt{5}}=\sqrt{20}\Leftrightarrow x^2=\sqrt{100}\Leftrightarrow x=\sqrt{10}\)
b/ \(\sqrt{\left(x-3\right)^2}-9=0\Leftrightarrow\left|x-3\right|=9\Leftrightarrow\left[{}\begin{matrix}x-3=9\\x-3=-9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=12\\x=-6\end{matrix}\right.\)
Vậy.......
c/ \(\sqrt{4x^2+4x+1}=6\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\Leftrightarrow\left|2x+1\right|=6\Leftrightarrow\left[{}\begin{matrix}2x-1=6\\2x-1=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{5}{2}\end{matrix}\right.\)
Vậy.......
a,
\(\sqrt{9-12x+4x^2}=4\\ \sqrt{\left(3-2x\right)^2}=4\\ \left|3-2x\right|=4\\ \Rightarrow\left[{}\begin{matrix}3-2x=4\\3-2x=-4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=-1\\2x=7\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=\dfrac{7}{2}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=\dfrac{7}{2}\end{matrix}\right.\)
\(PT\Leftrightarrow\left(\sqrt{4x^2-20x+28}-2\right)=3x^2-15x+18\\ \Leftrightarrow\dfrac{4x^2-20x+24}{\sqrt{4x^2-20x+28}+2}=3\left(x-2\right)\left(x-3\right)\\ \Leftrightarrow\dfrac{4\left(x-2\right)\left(x-3\right)}{\sqrt{4x^2-20x+28}+2}-3\left(x-2\right)\left(x-3\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x-3\right)\left(\dfrac{4}{\sqrt{4x^2-20x+28}+2}-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\\\dfrac{4}{\sqrt{4x^2-20x+28}+2}-3=0\left(1\right)\end{matrix}\right.\)
Vì \(\dfrac{4}{\sqrt{4x^2-20x+28}+2}\le2\Leftrightarrow\dfrac{4}{\sqrt{4x^2-20x+28}+2}-3\le-1< 0\)
Do đó \(\left(1\right)\) vô nghiệm
Vậy PT có nghiệm \(x=2;x=3\)