K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 3 2018

Lời giải:

Ta có:

\((x+3)(x+12)(x-4)(x-16)+20x^2=0\)

\(\Leftrightarrow [(x+3)(x-16)][(x+12)(x-4)]+20x^2=0\)

\(\Leftrightarrow (x^2-13x-48)(x^2+8x-48)+20x^2=0\)

Đặt \(x^2-12x-48=a\). PT trở thành:

\((a-x)(a+20x)+20x^2=0\)

\(\Leftrightarrow a^2+19ax-20x^2+20x^2=0\Leftrightarrow a^2+19ax=0\)

\(\Leftrightarrow a(a+19x)=0\)

\(\Leftrightarrow (x^2-12x-48)(x^2+7x-48)=0\)

\(\Leftrightarrow \left[\begin{matrix} x^2-12x-48=0\\ x^2+7x-48=0\end{matrix}\right.\)

\(\Leftrightarrow \left[\begin{matrix} x=6\pm 2\sqrt{21}\\ x=\frac{-7\pm \sqrt{241}}{2}\end{matrix}\right.\)

Vậy......

23 tháng 11 2022

a: =>(x^2+4x-5)(x^2+4x-21)=297

=>(x^2+4x)^2-26(x^2+4x)+105-297=0

=>x^2+4x=32 hoặc x^2+4x=-6(loại)

=>x^2+4x-32=0

=>(x+8)(x-4)=0

=>x=4 hoặc x=-8

b: =>(x^2-x-3)(x^2+x-4)=0

hay \(x\in\left\{\dfrac{1+\sqrt{13}}{2};\dfrac{1-\sqrt{13}}{2};\dfrac{-1+\sqrt{17}}{2};\dfrac{-1-\sqrt{17}}{2}\right\}\)

c: =>(x-1)(x+2)(x^2-6x-2)=0

hay \(x\in\left\{1;-2;3+\sqrt{11};3-\sqrt{11}\right\}\)

3 tháng 8 2017

\(\left(x+4\right)\left(x+6\right)\left(x-2\right)\left(x-12\right)=25x^2\)

\(\Leftrightarrow\left(x+3\right)\left(x+8\right)\left(x^2-15x+24\right)=0\)

2 tháng 8 2017

\(x^4-8x^3+21x^2-24x+9=0\)

\(\Leftrightarrow\left(x^2-3x+3\right)\left(x^2-5x+3\right)=0\)

\(\Leftrightarrow\left(x-\frac{5+\sqrt{13}}{2}\right)\left(x-\frac{5-\sqrt{13}}{2}\right)=0\) (vì \(x^2-3x+3=\left(x-\frac{3}{2}\right)^2+0,75>0\))

\(\Rightarrow\orbr{\begin{cases}x=\frac{5+\sqrt{13}}{2}\\x=\frac{5-\sqrt{13}}{2}\end{cases}}\)

8 tháng 7 2018

cả 2 pt đều giải theo kiểu cái đầu nhóm với cái cuối, 2 cái ở giữa nhóm với nhau. sau đó giải theo cách đặt ẩn phụ

21 tháng 2 2020

1) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=0\)

\(\Leftrightarrow\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24=0\)

\(\Leftrightarrow\left(x^2+5x+2x+10\right)\left(x^2+4x+3x+12\right)-24=0\)

\(\Leftrightarrow\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24=0\)

Đặt \(x^2+7x=a\), nên ta có :

\(\left(a+10\right)\left(a+12\right)-24=0\)

\(\Leftrightarrow\left(x+11-1\right)\left(x+11+1\right)-24=0\)

\(\Leftrightarrow\left[\left(x+11\right)^2-1\right]-24=0\)

\(\Leftrightarrow\left(x+11\right)^2-25=0\)

\(\Leftrightarrow\left(x+11-5\right)\left(x+11+5\right)=0\)

\(\Leftrightarrow\left(x+6\right)\left(x+16\right)=0\Leftrightarrow\orbr{\begin{cases}x=-6\\x=-16\end{cases}}\)

20 tháng 12 2018

Lần sau đừng tự tiện xếp vào phần bất pt bạn nhé :(

Ta có : \(4\left(x+5\right)\left(x+6\right)\left(x+10\right)\left(x+12\right)=3x^2\)

\(\Leftrightarrow4\left(x+5\right)\left(x+12\right)\left(x+6\right)\left(x+10\right)=3x^2\)

\(\Leftrightarrow4\left(x^2+17x+60\right)\left(x^2+16x+60\right)=3x^2\)(1)

Đặt \(x^2+16x+60=a\)

Pt (1) \(\Leftrightarrow4\left(a+x\right)a=3x^2\)

         \(\Leftrightarrow4\left(a^2+ax\right)=3x^2\)

          \(\Leftrightarrow4a^2+4ax=3x^2\)

          \(\Leftrightarrow4a^2+4ax+x^2=4x^2\)

         \(\Leftrightarrow\left(2a+x\right)^2=4x^2\)

          \(\Leftrightarrow\orbr{\begin{cases}2a+x=2x\\2a+x=-2x\end{cases}}\)

*Nếu \(2a+x=2x\)

\(\Leftrightarrow2a=x\)

\(\Leftrightarrow x^2+16x+60=x\)

\(\Leftrightarrow x^2+15x+60=0\)

\(\Leftrightarrow x^2+2.\frac{15}{2}.x+\frac{225}{4}+\frac{15}{4}=0\)

\(\Leftrightarrow\left(x+\frac{15}{2}\right)^2+\frac{15}{4}=0\)

Pt vô nghiệm

*Nếu \(2a+x=-2x\)

\(\Leftrightarrow2a+3x=0\)

\(\Leftrightarrow2\left(x^2-16x+60\right)+3x=0\)

\(\Leftrightarrow2x^2-32x+120+3x=0\)

\(\Leftrightarrow2x^2-29x+120=0\)

\(\Leftrightarrow x^2-\frac{29}{2}x+60=0\)

\(\Leftrightarrow x^2-2.\frac{29}{4}.x+\frac{841}{16}+\frac{119}{16}=0\)

\(\Leftrightarrow\left(x-\frac{29}{4}\right)^2+\frac{119}{16}=0\)

Pt vô nghiệm

Vậy pt vô nghiệm

23 tháng 4 2017

Giải phương trình sau: $\left ( x+3 \right )\sqrt{(4-x)(12+x)}+x=28$ - Phương trình, hệ phương trình và bất phương trình - Diễn đàn Toán học

18 tháng 3 2019

(x+3)√−x2−8x+48=28−x(x+3)−x2−8x+48=28−x

đăt:{x+3=a√−x2−8x+48=b{x+3=a−x2−8x+48=b

từ đây ta được hệ pt: {a2+b2=−2x+572ab=2x−48⇒(a−b)2=9⇒[a−b=3a+b=3]{a2+b2=−2x+572ab=2x−48⇒(a−b)2=9⇒[a−b=3a+b=3]

đến đây chắc được rồi.

nghiệm: [x=−2−2√7x=−5−√31]