K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2017

xem trong mấy loại sách thầy mua có bài nào tương tự ko thì tự lm

kiểu j chẳng có

AH
Akai Haruma
Giáo viên
13 tháng 8 2018

a) ĐK: \(x^2\leq 5\)

Ta có: \(\sqrt{5-x^2}=x-1\)

\(\Rightarrow \left\{\begin{matrix} x-1\geq 0\\ (\sqrt{5-x^2})^2=(x-1)^2\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} x\geq 1\\ 5-x^2=x^2-2x+1\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} x\geq 1\\ 2x^2-2x-4=0\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} x\geq 1\\ x^2-x-2=0\end{matrix}\right.\)\(\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ (x-2)(x+1)=0\end{matrix}\right.\)

\(\Rightarrow x=2\)

AH
Akai Haruma
Giáo viên
13 tháng 8 2018

b)

ĐK: \(x\geq \frac{5}{2}\)

Nhân cả 2 vế của pt với $\sqrt{2}$ thu được:

\(\sqrt{2x+2\sqrt{2x-5}-4}+\sqrt{2x-6\sqrt{2x-5}+4}=4\)

\(\Leftrightarrow \sqrt{(2x-5)+2\sqrt{2x-5}+1}+\sqrt{(2x-5)-6\sqrt{2x-5}+9}=4\)

\(\Leftrightarrow \sqrt{(\sqrt{2x-5}+1)^2}+\sqrt{(\sqrt{2x-5}-3)^2}=4\)

\(\Leftrightarrow \sqrt{2x-5}+1+|\sqrt{2x-5}-3|=4\)

\(\Rightarrow |\sqrt{2x-5}-3|=3-\sqrt{2x-5}(*)\)

Nếu \(x\geq 7\Rightarrow |\sqrt{2x-5}-3|=\sqrt{2x-5}-3\)

$(*)$ trở thành: \(\sqrt{2x-5}-3=3-\sqrt{2x-5}\)

\(\Rightarrow \sqrt{2x-5}=3\Rightarrow x=7\) (thỏa mãn)

Nếu \(\frac{5}{2}\leq x< 7\Rightarrow |\sqrt{2x-5}-3|=3-\sqrt{2x-5}\)

$(*)$ trở thành:

\(3-\sqrt{2x-5}=3-\sqrt{2x-5}\) (luôn đúng)

Vậy pt có nghiệm $x=7$ hoặc $\frac{5}{2}\leq x< 7$

Hay PT có nghiệm thuộc \([\frac{5}{2}; 7]\)

24 tháng 7 2018

\(a.R=\left(\dfrac{\sqrt{x}+1}{\sqrt{xy}+1}+\dfrac{\sqrt{x}\left(\sqrt{y}+1\right)}{1-\sqrt{xy}}+1\right):\left(1-\dfrac{\sqrt{x}+1}{\sqrt{xy}+1}-\dfrac{\sqrt{x}\left(\sqrt{y}+1\right)}{\sqrt{xy}-1}\right)\)

\(R=\left[\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{xy}-1\right)-\sqrt{x}\left(\sqrt{y}+1\right)\left(\sqrt{xy}+1\right)+xy-1}{\left(\sqrt{xy}+1\right)\left(\sqrt{xy}-1\right)}\right]:\left[\dfrac{xy-1-\left(\sqrt{x}+1\right)\left(\sqrt{xy}-1\right)-\sqrt{x}\left(\sqrt{y}+1\right)\left(\sqrt{xy}+1\right)}{\left(\sqrt{xy}+1\right)\left(\sqrt{xy}-1\right)}\right]\)

\(R=\dfrac{x\sqrt{y}-\sqrt{x}+\sqrt{xy}-1-xy-\sqrt{xy}-x\sqrt{y}-\sqrt{x}+xy-1}{xy-1}:\dfrac{xy-1-x\sqrt{y}+\sqrt{x}+\sqrt{xy}+1-xy-\sqrt{xy}-x\sqrt{y}-\sqrt{x}}{xy-1}\)

\(R=\dfrac{-2\sqrt{x}-2}{xy-1}:\dfrac{-2x\sqrt{y}-2\sqrt{xy}}{xy-1}\)

\(R=\dfrac{-2\left(\sqrt{x}+1\right)}{xy-1}.\dfrac{xy-1}{-2\left(x\sqrt{y}+\sqrt{xy}\right)}\)

\(R=\dfrac{\sqrt{x}+1}{x\sqrt{y}+\sqrt{xy}}\)

\(b.C=\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{7\sqrt{x}+4}{x-\sqrt{x}-6}-\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)

\(C=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}+\dfrac{7\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)

\(C=\dfrac{2x-6\sqrt{x}+7\sqrt{x}+4-x-4\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)

\(C=\dfrac{x-3\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)

\(C=\dfrac{\sqrt{x}}{\sqrt{x}+2}\)

\(c.M=\left(\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\dfrac{\sqrt{x}}{\sqrt{x}+x}=\dfrac{\sqrt{x}+1+x}{x+\sqrt{x}}.\dfrac{\sqrt{x}+x}{\sqrt{x}}=\dfrac{\sqrt{x}+1+x}{\sqrt{x}}\)

4 tháng 8 2018

1. \(\dfrac{a+4\sqrt{a}+4}{\sqrt{a}+2}+\dfrac{4-a}{\sqrt{a}-2}\)

\(=\dfrac{\left(\sqrt{a}+2\right)^2}{\sqrt{a}+2}-\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{\sqrt{a}-2}\)

\(=\sqrt{a}+2-\sqrt{a}-2\)

= 0

2: \(\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2-4\sqrt{xy}}{\sqrt{x}-\sqrt{y}}+\dfrac{y\sqrt{x}-x\sqrt{y}}{\sqrt{xy}}\)

\(=\sqrt{x}-\sqrt{y}+\sqrt{y}-\sqrt{x}=0\)

4: \(=\left(1+\sqrt{a}+\sqrt{a}+a\right)\cdot\dfrac{1}{1+\sqrt{a}}\)

\(=\dfrac{\left(\sqrt{a}+1\right)^2}{\sqrt{a}+1}=\sqrt{a}+1\)

19 tháng 7 2017

\(P=\left(\dfrac{\sqrt{x}+1}{\sqrt{xy}+1}+\dfrac{\sqrt{xy}+\sqrt{x}}{1-\sqrt{xy}}+1\right)\)

\(\div\left(1-\dfrac{\sqrt{xy}+\sqrt{x}}{\sqrt{xy}-1}-\dfrac{\sqrt{x}+1}{\sqrt{xy}+1}\right)\)

\(=\left[\dfrac{\left(\sqrt{x}+1\right)\left(1-\sqrt{xy}\right)+\left(\sqrt{xy}+\sqrt{x}\right)\left(\sqrt{xy}+1\right)+\left(\sqrt{xy}+1\right)\left(1-\sqrt{xy}\right)}{\left(\sqrt{xy}+1\right)\left(1-\sqrt{xy}\right)}\right]\)

\(\div\left[\dfrac{\left(\sqrt{xy}+1\right)\left(\sqrt{xy}-1\right)-\left(\sqrt{xy}+1\right)\left(\sqrt{x}+\sqrt{xy}\right)-\left(\sqrt{xy}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{xy}+1\right)\left(\sqrt{xy}-1\right)}\right]\)

\(=\dfrac{2\left(\sqrt{x}+1\right)}{1-xy}\times\dfrac{xy-1}{-2\sqrt{xy}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{xy}}{xy}\)

Áp dụng BĐT AM - GM, ta có:

\(6=\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\ge2\times\sqrt{\dfrac{1}{\sqrt{xy}}}\)

\(\Leftrightarrow\sqrt{xy}\ge\dfrac{1}{9}\)

Ta có:

\(M=\dfrac{\sqrt{xy}}{xy}=\dfrac{1}{\sqrt{xy}}\le\dfrac{1}{\dfrac{1}{9}}=9\)

Max = 9 <=> x = y = \(\dfrac{1}{9}\)

3 tháng 7 2018

\(a.\left(\dfrac{2x+1}{\sqrt{x^3}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{1+\sqrt{x^3}}{1+\sqrt{x}}-\sqrt{x}\right)=\dfrac{x+1+\sqrt{x}}{x\sqrt{x}-1}.\dfrac{x\sqrt{x}+1-\sqrt{x}\left(\sqrt{x}+1\right)}{1+\sqrt{x}}=\dfrac{1}{\sqrt{x}-1}.\left(\sqrt{x}-1\right)^2=\sqrt{x}-1\)

\(b.ĐK:x>2\) ( thường là những bài rút gọn sẽ kèm theo ĐK nhé , mình thêm như vậy , nếu không bạn chia TH ra )

\(\dfrac{\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}}{\sqrt{\dfrac{1}{x^2}-\dfrac{2}{x}+1}}=\dfrac{\sqrt{x-1}-1+\sqrt{x-1}+1}{1-\dfrac{1}{x}}=\dfrac{2\sqrt{x-1}}{1-\dfrac{1}{x}}\)

\(c.\left(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}\right):\left(x-y\right)+\dfrac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}}=\dfrac{\sqrt{x}-\sqrt{y}+2\sqrt{y}}{\sqrt{x}+\sqrt{y}}=1\)

\(d.Tuong-tự\)

3 tháng 7 2018

bạnn giải giúp mik lun câu d lun nha?!:)))))cảm ơn nhiw!:))))))

a: \(=\dfrac{3}{2}\sqrt{6}+\dfrac{2}{3}\sqrt{6}-2\sqrt{3}=\dfrac{13}{6}\sqrt{6}-2\sqrt{3}\)

b: \(VT=\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}\cdot\left(\sqrt{x}+\sqrt{y}\right)=\left(\sqrt{x}+\sqrt{y}\right)^2\)

c: \(VT=\dfrac{\sqrt{y}}{\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)}+\dfrac{\sqrt{x}}{\sqrt{y}\left(\sqrt{y}-\sqrt{x}\right)}\)

\(=\dfrac{y-x}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}=\dfrac{-\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}\)