Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Đặt 2x+1=a
Theo đề, ta có: \(\dfrac{1}{a^2}+\dfrac{1}{\left(a+1\right)^2}=3\)
=>3a^2(a+1)^2=a^2+2a+1+a^2
=>3a^2(a^2+2a+1)-2a^2-2a-1=0
=>3a^4+6a^3+a^2-2a-1=0
=>(a^2+a-1)(3a^2+3a+1)=0
=>\(a\in\left\{\dfrac{-1+\sqrt{5}}{2};\dfrac{-1-\sqrt{5}}{2}\right\}\)
=>\(2x+1\in\left\{\dfrac{-1+\sqrt{5}}{2};\dfrac{-1-\sqrt{5}}{2}\right\}\)
=>\(2x\in\left\{\dfrac{-3+\sqrt{5}}{2};\dfrac{-3-\sqrt{5}}{2}\right\}\)
hay \(x\in\left\{\dfrac{-3+\sqrt{5}}{4};\dfrac{-3-\sqrt{5}}{4}\right\}\)
\(\sqrt{2x+1}-\sqrt{3x}=x-1\)
ĐK: \(x\ge0\)
\(\sqrt{2x+1}-\sqrt{3x}=3x-\left(2x+1\right)\)
\(\Leftrightarrow\sqrt{2x+1}-\sqrt{3x}=\left(\sqrt{3x}-\sqrt{2x+1}\right)\left(\sqrt{3x}+\sqrt{2x+1}\right)\)
\(\Leftrightarrow\left(\sqrt{2x+1}-\sqrt{3x}\right)\left(1+\sqrt{3x}+\sqrt{2x+1}\right)=0\)
\(\Leftrightarrow\sqrt{2x+1}=\sqrt{3x}\Rightarrow x=1\left(tm\right)\)
\(2x^2-y^2+xy-3x+3y-3=0\)
\(\Leftrightarrow2x^2-xy+x+2xy-y^2+y-4x+2y-2=1\)
\(\Leftrightarrow\left(2x-y+1\right)\left(x+y-2\right)=1\)
Từ đây bạn xét bảng giá trị và thu được kết quả cuối cùng là: \(\left(x,y\right)=\left(1,2\right)\).
x2 + y2 = 2x2y2
<=> 2x2 + 2y2 - 4x2y2 = 0
<=> 2x2(1 - 2y2) - (1 - 2y2) = -1
<=> (2x2 - 1)(2y2 - 1) = 1 = 1.1
Lập bảng:
2x2 - 1 | 1 | -1 |
2y2 - 1 | 1 | -1 |
x | \(\pm\)1 | 0 |
y | \(\pm\)1 | 0 |
Vậy ...
Áp dụng bất đẳng thức x2+y2≥2xyx2+y2≥2xy nên ta có x2+y2+xy≥3xyx2+y2+xy≥3xy
Mà x2+y2+xy=x2y2≥0x2+y2+xy=x2y2≥0 nên suy ra x2y2+3xy≤0⟺−3≤xy≤0x2y2+3xy≤0⟺−3≤xy≤0
Vì x,yx,y nguyên nên xyxy nguyên, vậy nên xy∈{−3,−2,−1,0}xy∈{−3,−2,−1,0}
Trường hợp xy=−3xy=−3 ta tìm được các nghiệm (−1,3),(3,−1),(−3,1),(1,−3)(−1,3),(3,−1),(−3,1),(1,−3)
Trường hợp xy=−2xy=−2 ta tìm được các nghiệm (−1,2),(2,−1),(1,−2),(−2,1)(−1,2),(2,−1),(1,−2),(−2,1)
Trường hợp xy=−1xy=−1 ta tìm được các nghiệm (−1,1),(1,−1)(−1,1),(1,−1)
Trường hợp xy=0xy=0 ta tìm được nghiệm (0,0)(0,0)
Thử lại thì thấy chỉ có các nghiệm (0,0),(1,−1),(−1,1)(0,0),(1,−1),(−1,1) thỏa mãn và đó là các nghiệm nguyên cần tìm