Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-4\right)\left(x-5\right)\left(x-8\right)\left(x-10\right)=72x^2\)
\(\Leftrightarrow\left(x-4\right)\left(x-5\right)\left(x-8\right)\left(x-10\right)-72x^2=0\)
\(\Leftrightarrow\left(x^2-14x+40\right)\left(x^2-13x+40\right)-72x^2=0\)
\(\Leftrightarrow\left(x^2-13,5x+40-0,5x\right)\left(x^2-13,5x+40+0,5x\right)-72x^2=0\)
\(\Leftrightarrow\left(x^2-13,5x+40\right)^2-\left(0,5x\right)^2-72x^2=0\)
\(\Leftrightarrow\left(x^2-13,5x+40\right)^2-72,25x^2=0\)
\(\Leftrightarrow\left(x^2-13,5x+40+8,5x\right)\left(x^2-13,5x+40-8,5x\right)=0\)
\(\Leftrightarrow\left(x^2-5x+40\right)\left(x^2-22x+40\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-5x+40=0\left(VN\right)\\x^2-22x+40=0\Leftrightarrow\left[{}\begin{matrix}x=20\\x=2\end{matrix}\right.\end{matrix}\right.\)
Câu a,c xem lại đề, cách làm giống câu b, còn câu e giống câu d
b) \(2x^4+5x^3+x^2+5x+2=0\)
Ta nhận thấy x=0 không phải là 1 nghiệm của phương trình, chia cả 2 vế của phương trình cho \(x^2\ne0\), ta được:
\(2x^2+5x+1+\dfrac{5}{x}+\dfrac{2}{x^2}=0\)
\(\Leftrightarrow2\left(x^2+\dfrac{1}{x^2}\right)+5\left(x+\dfrac{1}{x}\right)+1=0\)
Đặt \(y=x+\dfrac{1}{x}\Rightarrow x^2+\dfrac{1}{x^2}=y^2-2\)
\(\Leftrightarrow2\left(y^2-2\right)+5y+1=0\)
\(\Leftrightarrow2y^2+5y-3=0\)
PT đơn giản, tự giải nha, ta được nghiệm y=1/2 và y=-3
Với y=1/2 thì không tìm được x
Với y=-3 thì tìm được 2 nghiệm, tự giải
a)\(x^5+x^2+2x+2=0\Leftrightarrow x^2\left(x^3+1\right)+2\left(x+1\right)=0\)
\(\Leftrightarrow x^2\left(x+1\right)\left(x^2-x+1\right)+2\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^4-x^3+x^2+2\right)=0\)
mà \(x^4-x^3+x^2+2>0\forall x\)=> x=-1
vậy...
b)\(x^4=4x-3\Leftrightarrow x^4-4x+3=0\)
\(\Leftrightarrow x^4-x^3+x^3-x^2+x^2-x-3x+3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2+x-3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-x^2+2x^2-2x+3x-3\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x^2+2x+3\right)=0\)
mà x2+2x+3=(x+1)2+2>0 vs mọi x=> x=1
vậy....
a. \(\Leftrightarrow\left(2x-5\right)\left(2x+5\right)\left(x+1\right)\left(2x-9\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-5=0\\2x+5=0\\x+1=0\\2x-9=0\end{matrix}\right.\) \(\Rightarrow x=\)
b. \(\Leftrightarrow x^3+x+3x^2+3=0\)
\(\Leftrightarrow x\left(x^2+1\right)+3\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+1=0\left(vn\right)\end{matrix}\right.\)
c. \(\Leftrightarrow2x\left(3x-1\right)^2-\left(9x^2-1\right)=0\)
\(\Leftrightarrow\left(6x^2-2x\right)\left(3x-1\right)-\left(3x-1\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(6x^2-5x-1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x-1\right)\left(6x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\x-1=0\\6x+1=0\end{matrix}\right.\)
d.
\(\Leftrightarrow x^3-3x^2+2x-3x^2+9x-6=0\)
\(\Leftrightarrow x\left(x^2-3x+2\right)-3\left(x^2-3x+2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2-3x+2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-1=0\\x-2=0\end{matrix}\right.\)
e.
\(\Leftrightarrow x^3+2x^2+x+3x^2+6x+3=0\)
\(\Leftrightarrow x\left(x^2+2x+1\right)+3\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x+1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x+1=0\end{matrix}\right.\)
a)1+x\(\ge\)mx+m
<=>x-mx\(\ge\)m-1
<=>x(1-m)\(\ge\)m-1(1)
*)Nếu m=1 thì (1)<=>0x=0(thỏa mãn với mọi x)
*)Nếu m < 1 thì 1-m>0
(1)<=>\(x\ge\dfrac{m-1}{1-m}\)
<=>x\(\ge\)-1
*)Nếu m>1 thì 1-m<0
(1)<=>x\(\le\dfrac{m-1}{1-m}\)
<=>x\(\le-1\)
Vậy...
b)2x4-x3-2x2-x+2=0
<=>(2x4-2x3)+(x3-x2)-(x2-x)+(2x+2)=0
<=>(x-1)(2x3+x2-x+2)=0
bó tay :)
Xét \(x=0\) không phải là nghiệm của phương trình .
Chia cả 2 vế cho \(x^2\) ta được :
\(x^2+2x+1+\frac{2}{x}+\frac{1}{x^2}=0\)
\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)+\left(2x+\frac{2}{x}\right)+1=0\)
\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2+2\left(x+\frac{1}{x}\right)-1=0\)
Đặt \(x+\frac{1}{x}=a\) . Phương trình trở thành :
\(a^2+2a-1=0\)
\(\Delta=4+4=8\)
\(\Rightarrow\left\{{}\begin{matrix}a_1=\frac{-2+2\sqrt{2}}{2}=-1+\sqrt{2}\\a_2=\frac{-2-2\sqrt{2}}{2}=-1-\sqrt{2}\end{matrix}\right.\)
Với \(a=-1+\sqrt{2}\)
\(\Rightarrow x+\frac{1}{x}=-1+\sqrt{2}\)
\(\Rightarrow x^2+\left(1-\sqrt{2}\right)x+1=0\)
Phương trình vô nghiệm .
Với \(a=-1-\sqrt{2}\)
\(\Rightarrow x+\frac{1}{x}=-1-\sqrt{2}\)
\(\Rightarrow x^2+\left(1+\sqrt{2}\right)x+1=0\)
\(\Delta=3+2\sqrt{2}-4=2\sqrt{2}-1\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{-\left(1+\sqrt{2}\right)+\sqrt{2\sqrt{2}-1}}{2}\\x_1=\frac{-\left(1+\sqrt{2}\right)-\sqrt{2\sqrt{2}-1}}{2}\end{matrix}\right.\)
Nghiệm rất xấu nên không thể tách một cách đẹp mắt, dùng casio ta tách được biểu thức như sau:
\(\left(x^2+\left(\sqrt{2}+1\right)x+1\right)\left(x^2-\left(\sqrt{2}-1\right)x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2+\left(\sqrt{2}+1\right)x+1=0\\x^2-\left(\sqrt{2}-1\right)x+1=0\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow x=\frac{-\left(\sqrt{2}+1\right)\pm\sqrt{2\sqrt{2}-1}}{2}\)
2x4-x3-2x2-x+2=0
\(\Leftrightarrow\)2x4-2x3+x3-x2-x2+x-2x+2 =0
\(\Leftrightarrow\)2x3(x-1)+x2(x-1)-x(x-1)+2(x-1)=0
\(\Leftrightarrow\)(x-1)(2x3+x2-x+2)=0
\(\Leftrightarrow\)(x-1)(x-1)(2x2+3x+2)=0
\(\Leftrightarrow\)(x-1)2(2x2+3x+2)=0
\(\Leftrightarrow\) x-1=0 (do 2x2+3x+2 >0)
\(\Leftrightarrow\)x=1