K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x=-1\)Giao lưu thôi nhé

15 tháng 1 2017

\(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(\sqrt{x^2+7x+10}+1\right)=3\)

\(\Leftrightarrow\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(\sqrt{\left(x+5\right)\left(x+2\right)}+1\right)=3\)

Đặt \(\hept{\begin{cases}\sqrt{x+5}=a\left(a\ge0\right)\\\sqrt{x+2}=b\left(b\ge0\right)\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a^2-b^2=3\\\left(a-b\right)\left(ab+1\right)=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a^2-b^2=3\\\left(a-b\right)\left(ab+1-a-b\right)=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a^2-b^2=3\\\left(a-b\right)\left(a-1\right)\left(b-1\right)=0\end{cases}}\)

Với a = b thì

\(\sqrt{x+5}=\sqrt{x+2}\Leftrightarrow0x=3\left(l\right)\)

Với a = 1 thì

\(\sqrt{x+5}=1\Leftrightarrow x=-4\left(l\right)\)

Với b = 1 thì

\(\sqrt{x+2}=1\Leftrightarrow x=-1\)

18 tháng 7 2015

ĐK: \(x\ge-2\)

\(pt\Leftrightarrow\frac{x+5-\left(x+2\right)}{\sqrt{x+5}+\sqrt{x+2}}.\left(1+\sqrt{\left(x+5\right)\left(x+2\right)}\right)=3\)

\(\Leftrightarrow3.\frac{1+\sqrt{x+2}.\sqrt{x+5}}{\sqrt{x+2}+\sqrt{x+5}}=3\)

\(\Leftrightarrow1+\sqrt{x+2}\sqrt{x+5}=\sqrt{x+2}+\sqrt{x+5}\)

\(\Leftrightarrow\left(\sqrt{x+2}-1\right)\left(\sqrt{x+5}-1\right)=0\)

\(\Leftrightarrow\sqrt{x+2}=1\text{ hoặc }\sqrt{x+5}=1\)

\(\Leftrightarrow x=-1\text{ (nhận) hoặc }x=-4\text{ (loại)}\)

Vậy tập nghiệm của pt là: \(S=\left\{1\right\}\)

 

AH
Akai Haruma
Giáo viên
24 tháng 10 2018

Câu 1:

ĐK: \(x\geq -2\)

Đặt \(\sqrt{x+5}=a; \sqrt{x+2}=b(a,b\geq 0)\)

\(\Rightarrow ab=\sqrt{(x+5)(x+2)}=\sqrt{x^2+7x+10}\)

PT trở thành:

\((a-b)(1+ab)=3\)

\(\Leftrightarrow (a-b)(1+ab)=(x+5)-(x+2)=a^2-b^2\)

\(\Leftrightarrow (a-b)(1+ab)-(a-b)(a+b)=0\)

\(\Leftrightarrow (a-b)(1+ab-a-b)=0\)

\(\Leftrightarrow (a-b)(a-1)(b-1)=0\)

\(a\neq b\Rightarrow \left[\begin{matrix} a-1=0\\ b-1=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} a=\sqrt{x+5}=1\\ b=\sqrt{x+2}=1\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} x=-4\\ x=-1\end{matrix}\right.\). Vì $x\geq -2$ nên chỉ có $x=-1$ là nghiệm duy nhất.

AH
Akai Haruma
Giáo viên
24 tháng 10 2018

Câu 2:

ĐK: \(-4\leq x\leq 4\)

Ta có: \((\sqrt{x+4}-2)(\sqrt{4-x}+2)=2x\)

\(\Leftrightarrow \frac{(x+4)-2^2}{\sqrt{x+4}+2}.(\sqrt{4-x}+2)=2x\)

\(\Leftrightarrow x.\frac{\sqrt{4-x}+2}{\sqrt{x+4}+2}=2x\)

\(\Leftrightarrow x\left(\frac{\sqrt{4-x}+2}{\sqrt{x+4}+2}-2\right)=0\)

\(\Rightarrow \left[\begin{matrix} x=0\\ \sqrt{4-x}+2=2\sqrt{x+4}+4(*)\end{matrix}\right.\)

Xét $(*)$

Đặt \(\sqrt{4-x}=a; \sqrt{x+4}=b\) thì ta có hệ:

\(\left\{\begin{matrix} a^2+b^2=8\\ a+2=2b+4\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a^2+b^2=8\\ a=2(b+1)\end{matrix}\right.\)

\(\Rightarrow 4(b+1)^2+b^2=8\)

\(\Leftrightarrow 5b^2+8b-4=0\Leftrightarrow (5b-2)(b+2)=0\)

\(\Rightarrow b=\frac{2}{5}\) (do \(b\geq 0)\)

\(\Rightarrow x+4=b^2=\frac{4}{25}\Rightarrow x=\frac{-96}{25}\) (t/m)

Vậy \(x\in \left\{ \frac{-96}{25}; 0\right\}\)

4 tháng 4 2017

a) (3x2 - 7x – 10)[2x2 + (1 - √5)x + √5 – 3] = 0

=> hoặc (3x2 - 7x – 10) = 0 (1)

hoặc 2x2 + (1 - √5)x + √5 – 3 = 0 (2)

Giải (1): phương trình a - b + c = 3 + 7 - 10 = 0

nên

x1 = - 1, x2 = =

Giải (2): phương trình có a + b + c = 2 + (1 - √5) + √5 - 3 = 0

nên

x3 = 1, x4 =

b) x3 + 3x2– 2x – 6 = 0 ⇔ x2(x + 3) – 2(x + 3) = 0 ⇔ (x + 3)(x2 - 2) = 0

=> hoặc x + 3 = 0

hoặc x2 - 2 = 0

Giải ra x1 = -3, x2 = -√2, x3 = √2

c) (x2 - 1)(0,6x + 1) = 0,6x2 + x ⇔ (0,6x + 1)(x2 – x – 1) = 0

=> hoặc 0,6x + 1 = 0 (1)

hoặc x2 – x – 1 = 0 (2)

(1) ⇔ 0,6x + 1 = 0

⇔ x2 = =

(2): ∆ = (-1)2 – 4 . 1 . (-1) = 1 + 4 = 5, √∆ = √5

x3 = , x4 =

Vậy phương trình có ba nghiệm:

x1 = , x2 = , x3 = ,

d) (x2 + 2x – 5)2 = ( x2 – x + 5)2 ⇔ (x2 + 2x – 5)2 - ( x2 – x + 5)2 = 0

⇔ (x2 + 2x – 5 + x2 – x + 5)( x2 + 2x – 5 - x2 + x - 5) = 0

⇔ (2x2 + x)(3x – 10) = 0

⇔ x(2x + 1)(3x – 10) = 0

Hoặc x = 0, x = , x =

Vậy phương trình có 3 nghiệm:

x1 = 0, x2 = , x3 =



11 tháng 7 2017

Đặt \(\left\{{}\begin{matrix}\sqrt{x+5}=a\\\sqrt{x+2}=b\end{matrix}\right.\)\(\left(a>0,b\ge0\right)\)\(\Rightarrow a^2-b^2=3\)

Kết hợp với phương trình ban đầu ta được hệ:

\(\left\{{}\begin{matrix}\left(a-b\right)\left(1+ab\right)=3\\a^2-b^2=3\end{matrix}\right.\)

Cứ thế giải .

12 tháng 7 2017

Đặt: \(\left\{{}\begin{matrix}\sqrt{x+5}=m\\\sqrt{x+2}=n\end{matrix}\right.\Rightarrow m^2-n^{^2}=3\)

(Đk: \(m>n\ge0\) )

Thay vào, ta có:

\(\left(m-m\right)\left(1+mn\right)=m^2-n^2\Leftrightarrow\left(m-n\right)\left(n-1\right)\left(m-1\right)=0\)

Thử các trường hợp m, n ta được nghiệm của phương trình đã cho là \(x=-4;x=-1\)

14 tháng 1 2017

\(\left(\sqrt{x+1}-\sqrt{x-2}\right)\left(1+\sqrt{x^2-x-2}\right)=3\left(DKXD:x\ge2\right)\)\(\Leftrightarrow\left(\sqrt{x+1}-\sqrt{x-2}\right)\left(\sqrt{x+1}+\sqrt{x-2}\right)\left(1+\sqrt{x\left(x-2\right)+\left(x-2\right)}\right)=3\left(\sqrt{x+1}+\sqrt{x-2}\right)\)\(\Leftrightarrow\left\{\left(x+1\right)-\left(x-2\right)\right\}\left(1+\sqrt{\left(x+1\right)\left(x-2\right)}\right)=3\left(\sqrt{x+1}+\sqrt{x-2}\right)\)

\(\Leftrightarrow3\left(1+\sqrt{\left(x+1\right)\left(x-2\right)}\right)=3\left(\sqrt{x+1}+\sqrt{x-2}\right)\)

\(\Leftrightarrow\sqrt{x+1}-\sqrt{\left(x+1\right)\left(x-2\right)}+\sqrt{x-2}-1=0\)

\(\Leftrightarrow-\left(\sqrt{x+1}-1\right)\left(\sqrt{x-2}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+1}=1\\\sqrt{x-2}=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\left(loai\right)\\x=3\left(nhan\right)\end{cases}}}\)

Vậy...

14 tháng 1 2017

Đặt \(\hept{\begin{cases}\sqrt{x+1}=a\\\sqrt{x-2}=b\end{cases}}\left(a,b\ge0\right)\) thì ta có

\(\hept{\begin{cases}a^2-b^2=3\left(1\right)\\\left(a-b\right)\left(1+ab\right)=3\left(2\right)\end{cases}}\)

Lấy (1) - (2) vế theo vế ta được

\(a^2-b^2-\left(a-b\right)\left(1+ab\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(a+b-1-ab\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(1-a\right)\left(b-1\right)=0\)

Với a = b

\(\Leftrightarrow\sqrt{x+1}=\sqrt{x-2}\)

\(\Leftrightarrow x+1=x-2\Leftrightarrow0x=3\left(l\right)\)

Với a = 1

\(\Leftrightarrow\sqrt{x+1}=1\Leftrightarrow x=0\left(l\right)\)

Với b = 1

\(\Leftrightarrow\sqrt{x-2}=1\Leftrightarrow x=3\)

Vậy PT có nghiệm là x = 3

7 tháng 8 2018

Hãy tích cho tui đi

vì câu này dễ mặc dù tui ko biết làm 

Yên tâm khi bạn tích cho tui

Tui sẽ ko tích lại bạn đâu

THANKS

7 tháng 8 2018

( x +1 ) ( x + 4 ) = 5 căn ( x^2 + 5x +28 ) (1) 
= ( x + 1 ) ( x + 4 ) = 5 căn [ (x^2 + 5x + 4) + 24 ] 
= ( x + 1 ) ( x + 4 ) = 5 căn [ ( x + 1 ) ( x + 4 ) + 24 ] 
Đặt a = ( x + 1 ) ( x + 4 ) 
(1) <=> a = 5 căn ( a + 24 ) 
<=> a^2 = 25 ( a + 24 ) 
<=> a^2 - 25a - 600 = 0 
<=> a1 = 40 
a2 = -15 

với a = 40 ta có: 
( x + 1 ) ( x + 4 ) = 40 
<=> x^2 + 5x + 4 = 40 
<=> x^2 + 5x - 36 = 0 
<=> x = 4 và x = - 9 

với a = -15, ta có: 
( x + 1 ) ( x + 4 ) = -15 
<=> x^2 + 5x + 4 = -15 
<=> x^2 + 5x + 19 = 0 
delta < 0 => pt vô nghiệm 

Vậy s = { -9; 4}

13 tháng 7 2017

a) ĐK: x>=-2

=> \(\sqrt{x+5}+\sqrt{x+2}>0\)

Nhân liên hợp:

\(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{x^2+7x+10}\right)=3\)

<=> \(\left(x+5-x-2\right)\left(1+\sqrt{x^2+7x+10}\right)=3\)

<=> \(3\left(1+\sqrt{x^2+7x+10}\right)=3\)

<=>1+\(\sqrt{\left(x+5\right)\left(x+2\right)}=1\)

<=> \(\sqrt{\left(x+5\right)\left(x+2\right)}=0\)

<=> (x+5) (x+2) =0

<=> x=-5 hoac x=-2

-Do x>= -2.

Vay x=-2