Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT:\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)
Ta có: \(\left|\sqrt{x-1}+2\right|+\left|3-\sqrt{x-1}\right|\ge\left|\sqrt{x-1}+2+3-\sqrt{x-1}\right|=5\)
Dấu \(=\)xảy ra khi \(AB\ge0\)
dat \(\sqrt{x-1}\) = t
ta có: \(\sqrt{x+3+4t}\)+ \(\sqrt{x+8-6t}\)= 5
x + 3 + 4t + x + 8 - 6t = 25
2x - 2t = 14 ( chia cả 2 vế cho 2)
x - t = 7
t = x - 7
thay t = \(\sqrt{x}-1\)vào ta được:
x - 7 = \(\sqrt{x-1}\)
( x - 7 )2 = x - 1
x2 -14x + 49 = x - 1
x2 - 15x + 50 = 0
k biết đúng hay k
\(\sqrt{5-x^6}=\sqrt[3]{3x^4-2}+1\)
Xét \(\left|x\right|=1\Leftrightarrow\sqrt{5-1}=\sqrt[3]{3-2}+1\)(đúng)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
Xét \(\left|x\right|>1\Rightarrow\sqrt{5-x^6}< \sqrt[3]{3x^4-2}+1\)(loại)
Xét \(\left|x\right|< 1\Rightarrow\sqrt{5-x^6}>\sqrt[3]{3x^4-2}+1\)(loại)
Vậy Pt có nghiệm (1;-1)
\(\sqrt[3]{x+3}-\sqrt[3]{6-x}=1\)
\(\Leftrightarrow\sqrt[3]{x+3}-2-\left(\sqrt[3]{6-x}-1\right)=0\)
\(\Leftrightarrow\dfrac{x+3-8}{\sqrt[3]{x+3}^2+4+2\sqrt[3]{x+3}}-\dfrac{6-x-1}{\sqrt[3]{6-x}^2+1+\sqrt[3]{6-x}}=0\)
\(\Leftrightarrow\dfrac{x-5}{\sqrt[3]{x+3}^2+4+2\sqrt[3]{x+3}}+\dfrac{x-5}{\sqrt[3]{6-x}^2+1+\sqrt[3]{6-x}}=0\)
\(\Leftrightarrow\left(x-5\right)\left(\dfrac{1}{\sqrt[3]{x+3}^2+4+2\sqrt[3]{x+3}}+\dfrac{1}{\sqrt[3]{6-x}^2+1+\sqrt[3]{6-x}}\right)=0\)
Dễ thấy: \(\dfrac{1}{\sqrt[3]{x+3}^2+4+2\sqrt[3]{x+3}}+\dfrac{1}{\sqrt[3]{6-x}^2+1+\sqrt[3]{6-x}}>0\)
\(\Rightarrow x-5=0\Leftrightarrow x=5\)
Đặt \(\left\{{}\begin{matrix}\sqrt[3]{x+3}=a\\\sqrt[3]{6-x}=b\end{matrix}\right.\)thì co hệ
\(\left\{{}\begin{matrix}a=1+b\left(1\right)\\a^3+b^3=9\left(2\right)\end{matrix}\right.\)
\(\Rightarrow\left(1+b\right)^3+b^3=9\)
\(\Leftrightarrow\left(b-1\right)\left(2b^2+5b+8\right)=0\)
Dễ thây \(2b^2+5b+8>0\)
\(\Rightarrow b=1\)
\(\Rightarrow\sqrt[3]{6-x}=1\)
\(\Leftrightarrow x=5\)
\(\sqrt[3]{x+3}-\sqrt[3]{6-x}=1\)
\(\Leftrightarrow\sqrt[3]{x+3}-2-\left(\sqrt[3]{6-x}-1\right)=0\)
\(\Leftrightarrow\frac{x+3-8}{\sqrt[3]{x+3}^2+4+2\sqrt[3]{x+3}}-\frac{6-x-1}{\sqrt[3]{6-x}^2+1+\sqrt[3]{6-x}}=0\)
\(\Leftrightarrow\left(x-5\right)\left(\frac{1}{\sqrt[3]{x+3}^2+4+2\sqrt[3]{x+3}}+\frac{1}{\sqrt[3]{6-x}^2+1+\sqrt[3]{6-x}}\right)=0\)
Dễ thấy :
\(\frac{1}{\sqrt[3]{x+3}^2+4+2\sqrt[3]{x+3}}+\frac{1}{\sqrt[3]{6-x}^2+1+\sqrt[3]{6-x}}>0\)
\(\Rightarrow x-5=0\Leftrightarrow x=5\)
Chúc bạn học tốt !!!
Đặt \(\hept{\begin{cases}\sqrt[3]{2-x}=b\\\sqrt{x-1}=a\end{cases}}\)
Ta có hệ \(\hept{\begin{cases}a^2+b^3=1\\a-b=5\end{cases}}\)
<=> \(\hept{\begin{cases}a=3\\b=-2\end{cases}}\)
<=> x = 10
giai phuong trinh
\(\sqrt{x}-5+\dfrac{1}{3}\sqrt{9x}-45=\dfrac{1}{5}\sqrt{25x}-125=6\)
giup minh voi
Sửa đề: \(\sqrt{x-5}+\dfrac{1}{3}\sqrt{9x-45}=\dfrac{1}{5}\sqrt{25x-125}+6\)
\(\Leftrightarrow\sqrt{x-5}+\dfrac{1}{3}\cdot3\cdot\sqrt{x-5}-\dfrac{1}{5}\cdot5\sqrt{x-5}=6\)
\(\Leftrightarrow\sqrt{x-5}=6\)
=>x-5=36
hay x=41
\(x+\sqrt{5+\sqrt{x-1}}=6\)
Đk:\(x\ge1\)
\(pt\Leftrightarrow\sqrt{5+\sqrt{x-1}}=6-x\)
\(\Leftrightarrow5+\sqrt{x-1}=x^2-12x+36\)
\(\Leftrightarrow\sqrt{x-1}=x^2-12x+31\)
\(\Leftrightarrow x-1=x^4-24x^3+206x^2-744x+961\)
\(\Leftrightarrow-x^4+24x^3-206x^2+745x-962=0\)
\(\Leftrightarrow-\left(x^2-13x+37\right)\left(x^2-11x+26\right)=0\)
\(\Rightarrow x=-\frac{\sqrt{17}-11}{2}\) (thỏa)