\(x^4+2010x^2+2009x+2010=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2020

ta có x4+2010x2+2009x+2010=0

suy ra x4-x+2010x+2010x2+2010=0

x(x3-1)+2010(x2+x+1)=0

x(x-1)(x2+x+1)+2010(x2+x+1)=0

(x2+x+1)(x2-x+2010)=0

hoặc x2+x+1=0

         x2-x+2020=0

mà x2+x+1>0, x2-x+2020>0

Vậy không tồn tại x thỏa mãn đề bài

19 tháng 3 2020

\(\Leftrightarrow x^4-x+2010\left(x^2+x+1\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x^2+x+1\right)+2010\left(x^2_{ }+x+1\right)=0\)

\(\Leftrightarrow\left(x^2-x+2010\right)\left(x^2+x+1\right)=0\left(1\right)\)

Ta có \(\left\{{}\begin{matrix}x^2-x+2010=\left(x-\frac{1}{2}\right)^2+\frac{8039}{4}>0\\x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\end{matrix}\right.\)

Nên PT vô gnhiệm

26 tháng 3 2019

\(x^4+2010x^2+2009x+2010\)

\(=\left(x^4-x\right)+\left(2010x^2+2010x+2010\right)\)

\(=x\left(x^3-1\right)+2010\left(x^2+x+1\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)+2010\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+2010\right)\)

13 tháng 12 2020

a) (x  + y + z)3 - x3 - y3 - z3

= (x + y + z)3 - z3 - (x3 + y3

= (x + y + z - z)[(x + y + z)2 + (x + y + z).z + z2) - (x + y)(x2 - xy + y2)

= (x + y)(x2 + y2 + z2 + 2xy + 2yz + 2zx + 2xz + 2yz + z2 + z2) - (x + y)(x2 - xy + y2)

= (x + y)(x2 + y2 + 3z2 + 2xy + 4yz + 4zx) - (x + y)(x2 - xy + y2)

= (x + y)(3z2 + 3xy + 5yz + 4zx) 

b) Sửa đề x4 + 2010x2 + 2009x + 2010

= (x4 + x2 + 1) + (2009x2 + 2009x + 2009)

= (x4 + 2x2 + 1 - x2) + 2009(x2 + x + 1)

= [(x2 + 1)2 - x2] + 2009(x2 + x + 1)

= (x2 + x + 1)(x2 - x + 1) + 2009(x2 + x + 1)

= (x2 + x + 1)(x2 - x + 2010)

18 tháng 3 2020

-Ta thấy \(x^4+x^2+1=x^4-x+x^2+x+1=\left(x^2-x\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)=\left(x^2-x+1\right)\left(x^2+x+1\right)\)

Vậy PT sẽ thành

\(\frac{2010x\left(x^3+1\right)}{x\left(x^4+x^2+1\right)}+\frac{2010x\left(x^3-1\right)}{x\left(x^4+x^2+1\right)}=\frac{2011}{x\left(x^4+x^2+1\right)}\)

\(\Leftrightarrow2.2010x^4=2011\Leftrightarrow x=...\)

14 tháng 10 2015

x4+2010x2+2009x+2010

=x4-x+2010x2+2010x+2010

=x.(x3-1)+2010.(x2+x+1)

=x.(x-1)(x2+x+1)+2010.(x2+x+1)

=(x2+x+1)(x2-x+2010)

14 tháng 10 2015

(x+y+z)3-x3-y3-z3=(x+y+z-x)[(x+y+z)2+(x+y+z).x+x2]-(y+z)(y2-yz+z2)

=(y+z)(x2+y2+z2+2xy+2yz+2zx+x2+xy+zx+x2)-(y+z)(y2-yz+z2)

=(y+z)(3x2+y2+z2+3xy+2yz+3zx)-(y+z)(y2-yz+z2)

=(y+z)(3x2+y2+z2+3xy+2yz+3zx-y2+yz-z2)

=(y+z)(3x2+3yz+3xy+3zx)

=3.(y+z)(x2+xy+yz+zx)

=3.(y+z)[x.(x+y)+z.(x+y)

=3.(y+z)(x+y)(x+z)

18 tháng 3 2020

x.x^4 nha

7 tháng 3 2017

\(\frac{x-2}{2012}+\frac{x-3}{2011}+\frac{x-4}{2010}+\frac{x-2029}{5}=0\)

\(\Leftrightarrow\frac{x-2}{2012}-1+\frac{x-3}{2011}-1+\frac{x-4}{2010}-1+\frac{x-2029}{5}+3=0\)

\(\Leftrightarrow\frac{x-2014}{2012}+\frac{x-2014}{2011}+\frac{x-2014}{2010}+\frac{x-2014}{5}=0\)

\(\Leftrightarrow\left(x-2014\right)\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+\frac{1}{5}\right)=0\)

\(\Leftrightarrow x-2014=0\).Do \(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}+\frac{1}{5}\ne0\)

\(\Leftrightarrow x=2014\)

ai bít thì giúp mình với nhé

\(a,\frac{15-x}{2000}+\frac{14-x}{2001}=\frac{13-x}{2002}+\frac{12-x}{2003}\)

\(\Leftrightarrow\frac{15-x}{2000}+1+\frac{14-x}{2001}+1=\frac{13-x}{2002}+1+\frac{12-x}{2003}+1\)

\(\Leftrightarrow\frac{15-x+2000}{2000}+\frac{14-x+2001}{2001}=\frac{13-x+2002}{2002}+\frac{12-x+2003}{2003}\)

\(\Leftrightarrow\frac{2015-x}{2000}+\frac{2015-x}{2001}=\frac{2015}{2002}+\frac{2015-x}{2003}\)

\(\Leftrightarrow\left(2015-x\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)

mà \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}>0\)

\(\Leftrightarrow2015-x=0\)

\(\Leftrightarrow x=2015\)

KL : PT có nghiệm \(S=\left\{2015\right\}\)