Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt \(\sqrt{x+y-4}=a;\sqrt{x-y+4}=b;\sqrt{-x+y+4}=c\left(a;b;c\ge0\right)\)
pt trở thành a+b+c=\(\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}\)
bunhia có VT\(\le\)VP
dấu = xảy ra <=>a=b=c<=>x=y=4
d/ Điều kiện xác định : \(4\le x\le6\)
Áp dụng bđt Bunhiacopxki vào vế trái của pt :
\(\left(1.\sqrt{x-4}+1.\sqrt{6-x}\right)^2\le\left(1^2+1^2\right)\left(x-4+6-x\right)\)
\(\Leftrightarrow\left(1.\sqrt{x-4}+1.\sqrt{6-x}\right)^2\le4\Leftrightarrow\sqrt{x-4}+\sqrt{6-x}\le2\)
Xét vế phải : \(x^2-10x+27=\left(x^2-10x+25\right)+2=\left(x-5\right)^2+2\ge2\)
Suy ra pt tương đương với : \(\begin{cases}\sqrt{x-4}+\sqrt{6-x}=2\\x^2-10x+27=2\end{cases}\) \(\Leftrightarrow x=5\) (tmđk)
Vậy pt có nghiệm x = 5
a/ ĐKXĐ : \(x\ge0\)
\(\sqrt{x+4-4\sqrt{x}}+\sqrt{x+9-6\sqrt{x}}=1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}+\sqrt{\left(\sqrt{x}-3\right)^2}=1\)
\(\Leftrightarrow\left|\sqrt{x}-2\right|+\left|\sqrt{x}-3\right|=1\) (1)
Tới đây xét các trường hợp :
1. Nếu \(x>9\) thì pt (1) \(\Leftrightarrow\sqrt{x}-2+\sqrt{x}-3=1\Leftrightarrow\sqrt{x}=6\Leftrightarrow x=9\) (ktm)
2. Nếu \(0\le x< 4\) thì pt (1) \(\Leftrightarrow2-\sqrt{x}+3-\sqrt{x}=1\Leftrightarrow2\sqrt{x}=4\Leftrightarrow x=4\) (ktm)
3. Nếu \(4\le x\le9\) thì pt (1) \(\Leftrightarrow\sqrt{x}-2+3-\sqrt{x}=1\Leftrightarrow1=1\left(tmđk\right)\)
Vậy kết luận : pt có vô số nghiệm nếu x thuộc khoảng \(4\le x\le9\)
https://diendantoanhoc.net/topic/179009-sumsqrtxy-4sqrtxsqrty2/
\(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3\left(x^2-x-1\right)}-\sqrt{x^2-3x+4}\)
b) đk: \(x>2012;y>2013\)
pt \(\frac{16}{\sqrt{x-2012}}+\sqrt{x-2012}+\frac{1}{\sqrt{y-2013}}+\sqrt{y-2013}=10\)
\(VT\ge2\sqrt{\frac{16}{\sqrt{x-2012}}.\sqrt{x-2012}}+2\sqrt{\frac{1}{\sqrt{y-2013}}.\sqrt{y-2013}}=8+2=10\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x-2012=16\\y-2013=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2028\\y=2014\end{cases}}\)
\(\sqrt{x+y-4}+\sqrt{x-y+4}+\sqrt{-x+y+4}=\sqrt{x}+\sqrt{y}+2\)
ĐKXĐ:
\(x+y-4\ge0\rightarrow x+y\ge4\rightarrow x+y\ge4\)
\(x-y+4\ge0\rightarrow x-y\ge-4\rightarrow x-y\ge-4\)
\(-x+y+4\ge0\rightarrow-x+y\ge-4\rightarrow x-y\le4\)
\(x\ge0\)
\(y\ge0\)
Với \(a;b\ge0\) ta có:
\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)
\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow2\left(a+b\right)\ge a+b+2\sqrt{ab}\)
\(\Leftrightarrow2\left(a+b\right)\ge\left(\sqrt{a}+\sqrt{b}\right)^2\)
\(\rightarrow\sqrt{a}+\sqrt{b}\le\sqrt{2\left(a+b\right)}\)
Đẳng thức xảy ra khi \(a=b\)
Áp dụng bất đẳng thức trên, ta có:
\(\hept{\begin{cases}\sqrt{x+y-4}+\sqrt{x-y+4}\le\sqrt{2\left(x+y-4+x-y+4\right)}=2\sqrt{x}\\\sqrt{x+y-4}+\sqrt{-x+y+4}\le\sqrt{2[\left(x+y-4\right)+\left(-x+y+4\right)]}=2\sqrt{y}\\\sqrt{x-y+4}+\sqrt{-x+y+4}\le\sqrt{2[\left(x-y+4\right)+\left(-x+y+4\right)}=4\end{cases}}\)
\(\rightarrow2\sqrt{x+y-4}+2\sqrt{x-y+4}+2\sqrt{-x+y+4}\le2\sqrt{x}+2\sqrt{y}+4\)
\(\rightarrow\sqrt{x+y-4}+\sqrt{x-y+4}+\sqrt{-x+y+4}\le\sqrt{x}+\sqrt{y}+2\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}x+y-4=x-y+4\\x+y-4=-x+y+4\\x-y+4=-x+y+4\end{cases}}\Leftrightarrow x=y=4\) (Thoả mãn)