Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK:\(\hept{\begin{cases}5x^2+27x+25\ge0\\x+1\ge0\\x^2-4\ge0\end{cases}}\)(*)
\(pt\Leftrightarrow\sqrt{5x^2+27x+25}=5\sqrt{x+1}+\sqrt{x^2-4}\)
\(\Leftrightarrow5x^2+27x+25=25x+25+x^2-4+10\sqrt{\left(x+1\right)\left(x^2-4\right)}\)
\(\Leftrightarrow4x^2+2x+4=10\sqrt{\left(x+1\right)\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow2x^2+x+2=5\sqrt{\left(x^2-x-2\right)\left(x+2\right)}\)
Đặt \(\hept{\begin{cases}\sqrt{x^2-x-2}=a\\\sqrt{x+2}=b\end{cases}}\)\(\Rightarrow2a^2+3b^2=5ab\Leftrightarrow\left(a-b\right)\left(2a-3b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=b\\2a=3b\end{cases}}\)..............
MỤC ĐÍCH CỦA MÀY LÀ QUẢNG CÁO NHẠC THÌ YÊU CẦU CÚT OK?
CÒN NẾU MÀY MÀY MUỐN HỎI THẬT SỰ THÌ XIN MÀY CHỈ GÕ ĐỀ TOÁN VÀ ĐỪNG CHO THÊM MẤY THỨ TẠP CHẤT KIA VÀO.
CHỨ KHÔNG PHẢI LÀ HỎI MỘT CÁCH CHỐNG CHẾ KIA NHÉ
ĐKXĐ: \(x\ge2\)
\(\Leftrightarrow\sqrt{5x^2+27x+25}=5\sqrt{x+1}+\sqrt{x^2-4}\)
\(\Leftrightarrow5x^2+27x+25=25x+25+x^2-4+10\sqrt{\left(x+1\right)\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow2x^2+x+2=5\sqrt{\left(x^2-x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow2\left(x^2-x-2\right)+3\left(x+2\right)=5\sqrt{\left(x^2-x-2\right)\left(x+2\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x-2}=a\\\sqrt{x+2}=b\end{matrix}\right.\)
\(\Rightarrow2a^2+3b^2=5ab\Leftrightarrow2a^2-5ab+3b^2=0\)
\(\Leftrightarrow\left(a-b\right)\left(2a-3b\right)=0\Leftrightarrow\left[{}\begin{matrix}a=b\\2a=3b\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-x-2}=\sqrt{x+2}\\2\sqrt{x^2-x-2}=3\sqrt{x+2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-2=x+2\\4\left(x^2-x-2\right)=9\left(x+2\right)\end{matrix}\right.\) \(\Leftrightarrow...\)
ĐKXĐ: x \ge 2x≥2
Chuyển vế và bình phương hai vế:
\sqrt{5x^2 + 27x + 25} - 5\sqrt{x+1} = \sqrt{x^2 - 4}5x2+27x+25−5x+1=x2−4
\Leftrightarrow \sqrt{5x^2 + 27x + 25} = \sqrt{x^2 - 4} + 5\sqrt{x+1}⇔5x2+27x+25=x2−4+5x+1
\Leftrightarrow 5x^2 + 27x + 25 = x^2 - 4 + 25x + 25 + 10\sqrt{(x+1)(x^2-4)}⇔5x2+27x+25=x2−4+25x+25+10(x+1)(x2−4)
\Leftrightarrow 4x^2 + 2x + 4 = 10\sqrt{(x+1)(x^2 - 4)}⇔4x2+2x+4=10(x+1)(x2−4)
\Leftrightarrow 2(x^2 - x - 2) + 3(x+2) = 5\sqrt{(x+1)(x^2 - 4)}⇔2(x2−x−2)+3(x+2)=5(x+1)(x2−4)
Đặt a = \sqrt{x^2 - x - 2} \ge 0;a=x2−x−2≥0; b = \sqrt{x+2} \ge 0b=x+2≥0.
Phương trình trở thành 5ab = 2a^2 + 3b^2 \Leftrightarrow (a-b)(2a-3b) = 0 \Leftrightarrow \left[ \begin{aligned} & a = b\\ & 2a = 3b\\ \end{aligned}\right.5ab=2a2+3b2⇔(a−b)(2a−3b)=0⇔[a=b2a=3b.
+ Với a = ba=b thì \sqrt{x^2 - x - 2} = \sqrt{x+2} \Leftrightarrow x^2 - 2x - 4 = 0 \Leftrightarrow \left[ \begin{aligned} & x = 1-\sqrt5 \ \text{(loại)}\\ & x = 1+\sqrt5 \ \text{(thỏa mãn)}\\ \end{aligned}\right.x2−x−2=x+2⇔x2−2x−4=0⇔[x=1−5 (loại)x=1+5 (thỏa ma˜n).
+ Với 2a = 3b2a=3b thì 2\sqrt{x^2 - x - 2} = 3 \sqrt{x+2}2x2−x−2=3x+2
\Leftrightarrow 4x^2 - 13x - 26 = 0 \Leftrightarrow \left[ \begin{aligned} & x = \dfrac{13 + 3\sqrt{65}}8 \ \text{(thỏa mã)n}\\ & x = \dfrac{13 - 3\sqrt{65}}8 \ \text{(loại)}\\ \end{aligned}\right.⇔4x2−13x−26=0⇔⎣⎢⎢⎢⎡x=813+365 (thỏa ma˜)nx=813−365 (loại).
Vậy phương trình có hai nghiệm x = 1+\sqrt5x=1+5, x = \dfrac{13 + 3\sqrt{65}}8x=813+365.
1.a)Ta có :
\(\sqrt{x^2-2x+1}-\sqrt{x^2-4x+4}=x+3\left(x\ge1\right)\)
=>\(\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-2\right)^2}=x+3\)
=> \(\left|x-1\right|-\left|x-2\right|=x-3\) ( Vì \(x\ge1=>x-1\ge0\) ;\(x-2\ge2\))
=> x-1-(x-2)=x-3
=>x-1-x+2=x-3
=>-x=-=>x=4
a)\(\sqrt{3x+1}+2x=\sqrt{x-4}-5\left(ĐKXĐ:x\ge4\right)\)
\(\Leftrightarrow\left(\sqrt{3x+1}-\sqrt{x-4}\right)+\left(2x+5\right)=0\)
\(\Leftrightarrow\frac{3x+1-x+4}{\sqrt{3x+1}+\sqrt{x-4}}+\left(2x+5\right)=0\)
\(\Leftrightarrow\frac{2x+5}{\sqrt{3x+1}+\sqrt{x-4}}+\left(2x+5\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1\right)=0\)
a') (tiếp)
\(\Leftrightarrow\orbr{\begin{cases}2x+5=0\\\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2,5\left(KTMĐKXĐ\right)\\\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\end{cases}}\)
Xét phương trình \(\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\)(1)
Với mọi \(x\ge4\), ta có:
\(\sqrt{3x+1}>0\); \(\sqrt{x-4}\ge0\)
\(\Rightarrow\sqrt{3x+1}+\sqrt{x-4}>0\Rightarrow\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}>0\)
\(\Rightarrow\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1>0\)
Do đó phương trình (1) vô nghiệm.
Vậy phương trình đã cho vô nghiệm.
bài 1:
\(\sqrt{x+5}+x=5\\ \Leftrightarrow\sqrt{x+5}=5-x\\ \Leftrightarrow\left(\sqrt{x+5}\right)^2=\left(5-x\right)^2\\ \Leftrightarrow x+5=25+10x+x^2\\ \Leftrightarrow x^2+9x+20=0\\ \Leftrightarrow x^2+9x+20,25-0,25=0\\ \Leftrightarrow\left(x+4,5\right)^2=0,25\\ \Rightarrow\left[{}\begin{matrix}x+4,5=0,5\\x+4,5=-0,5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)