Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, - Đặt \(x^2+x=a\) ta được phương trình :\(a^2+4a-12=0\)
=> \(a^2-2a+6a-12=0\)
=> \(a\left(a-2\right)+6\left(a-2\right)=0\)
=> \(\left(a+6\right)\left(a-2\right)=0\)
=> \(\left[{}\begin{matrix}a+6=0\\a-2=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}a=2\\a=-6\end{matrix}\right.\)
- Thay lại \(x^2+x=a\) vào phương trình trên ta được :\(\left[{}\begin{matrix}x^2+x=2\\x^2+x=-6\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x^2+x-2=0\\x^2+x+6=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}\left(x+\frac{1}{2}\right)^2-\frac{9}{4}=0\\\left(x+\frac{1}{2}\right)^2+\frac{23}{4}=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}\left(x+\frac{1}{2}\right)^2=\frac{9}{4}\\\left(x+\frac{1}{2}\right)^2=-\frac{23}{4}\left(VL\right)\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x+\frac{1}{2}=\sqrt{\frac{9}{4}}\\x+\frac{1}{2}=-\sqrt{\frac{9}{4}}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\sqrt{\frac{9}{4}}-\frac{1}{2}=1\\x=-\sqrt{\frac{9}{4}}-\frac{1}{2}=-2\end{matrix}\right.\)
Vậy phương trình trên có nghiệm là \(S=\left\{1,-2\right\}\)
b, Đặt \(x^2+2x+3=a\) -> làm tương tự câu a .
c, Ta có : \(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=72\)
=> \(\left(x^2-4\right)\left(x^2-10\right)=72\)
- Đặt \(x^2-4=a\) và \(x^2-10=a-6\) ta được phương trình :
\(a\left(a-6\right)=72\)
=> \(a^2-6a-72=0\)
=> \(a^2+6a-12a-72=0\)
=> \(a\left(a+6\right)-12\left(a+6\right)=0\)
=> \(\left(a+6\right)\left(a-12\right)=0\)
=> \(\left[{}\begin{matrix}a+6=0\\a-12=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}a=-6\\a=12\end{matrix}\right.\)
- Thay lại \(x^2-4=a\) vào phương trình trên ta được :\(\left[{}\begin{matrix}x^2-4=-6\\x^2-4=12\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x^2=-2\left(VL\right)\\x^2=16\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\sqrt{16}=4\\x=-\sqrt{16}=-4\end{matrix}\right.\)
Vậy phương trình trên có nghiệm là \(S=\left\{4,-4\right\}\)
d, Ta có : \(x\left(x+1\right)\left(x^2+x+1\right)=42\)
=> \(\left(x^2+x\right)\left(x^2+x+1\right)=42\)
- Đặt \(x^2+x=a\) ta được phương trình : \(a\left(a+1\right)=42\)
=> \(a^2+a-42=0\)
=> \(a^2+7a-6a-42=0\)
=> \(a\left(a+7\right)-6\left(a+7\right)=0\)
=> \(\left(a-6\right)\left(a+7\right)=0\)
=> \(\left[{}\begin{matrix}a=6\\a=-7\end{matrix}\right.\)
- Thay \(a=x^2+x\) vào phương trình ta được : \(\left[{}\begin{matrix}x^2+x=6\\x^2+x=-7\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x^2+x-6=0\\x^2+x+7=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}\left(x+\frac{1}{2}\right)^2-\frac{25}{4}=0\\\left(x+\frac{1}{2}\right)^2+\frac{27}{4}=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}\left(x+\frac{1}{2}\right)^2=\frac{25}{4}\\\left(x+\frac{1}{2}\right)^2=-\frac{27}{4}\left(VL\right)\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x+\frac{1}{2}=\sqrt{\frac{25}{4}}\\x+\frac{1}{2}=-\sqrt{\frac{25}{4}}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\sqrt{\frac{25}{4}}-\frac{1}{2}=2\\x=-\sqrt{\frac{25}{4}}-\frac{1}{2}=-3\end{matrix}\right.\)
Vậy phương trình trên có tập nghiệm là \(S=\left\{2;-3\right\}\)
nhìn căng nhể :))
a) ( x - 1 )( x - 3 )( x + 5 )( x + 7 ) - 297 = 0
<=> [ ( x - 1 )( x + 5 ) ][ ( x - 3 )( x + 7 ) ] - 297 = 0
<=> ( x2 + 4x - 5 )( x2 + 4x - 21 ) - 297 = 0
Đặt t = x2 + 4x - 5
pt <=> t( t - 16 ) - 297 = 0
<=> t2 - 16t - 297 = 0
<=> t2 - 27t + 11t - 297 = 0
<=> t( t - 27 ) + 11( t - 27 ) = 0
<=> ( t - 27 )( t + 11 ) = 0
<=> ( x2 + 4x - 5 - 27 )( x2 + 4x - 5 + 11 ) = 0
<=> ( x2 + 4x - 32 )( x2 + 4x + 6 ) = 0
<=> ( x2 - 4x + 8x - 32 )( x2 + 4x + 6 ) = 0
<=> [ x( x - 4 ) + 8( x - 4 ) ]( x2 + 4x + 6 ) = 0
<=> ( x - 4 )( x + 8 )( x2 + 4x + 6 ) = 0
Đến đây dễ rồi :)
\(\left(x-5\right)\left(x-1\right)=2x\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x-5-2x\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)
Vậy............
\(5\left(x+3\right)\left(x-2\right)-3\left(x+5\right)\left(x+2\right)=0\)
\(\Leftrightarrow5\left(x^2+x-6\right)-3\left(x^2+7x+10\right)=0\)
\(\Leftrightarrow2x^2-16x-60=0\)
\(\Leftrightarrow x^2-8x-30=0\)
làm tiếp nhé!!!!!
\(\left(x-1\right)^2-1+x^2=\left(1-x\right)\left(x+3\right)\)
\(\Leftrightarrow\left(x-1\right)^2+\left(x-1\right)\left(x+1\right)=\left(1-x\right)\left(x+3\right)\)
\(\Leftrightarrow2x\left(x-1\right)=\left(1-x\right)\left(x+3\right)\)
\(\Leftrightarrow2x\left(x-1\right)+\left(x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x+3\right)=0\)
\(\Rightarrow x=\pm1\)
Giúp tớ mấy câu còn lại đi các cậu, tớ cần gấp lắm ạ ;;-;;
a) \(\left(x-3\right)^2-\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(x^2-6x+9\right)-\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow x^2-6x+9-x^2-2x-1=0\)
\(\Leftrightarrow-8x+8=0\Leftrightarrow-8\left(x-1\right)=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy phương trình có tập nghiệm S = {1}
b) \(\left(x^2-4\right)\left(2x+3\right)=\left(x^2-4\right)\left(x-1\right)\)
\(\Leftrightarrow\left(x^2-4\right)\left(2x+3\right)-\left(x^2-4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(2x+3-x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x+4\right)=0\)
<=> x - 2 = 0 hoặc x + 2 = 0 hoặc x + 4 = 0
<=> x = 2 hoặc x = -2 hoặc x = -4
Vậy phương trình có tập nghiệm S = { 2; -2; -4 }
c) \(\left(3x-7\right)^2-4\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(9x^2-42x+49\right)-4\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow9x^2-42x+49-4x^2-8x-4=0\)
\(\Leftrightarrow5x^2-50x+45=0\Leftrightarrow5\left(x-1\right)\left(x-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=9\end{cases}}\)
Vậy phương trình có tập nghiệm S = { 1; 9 }
a) đặt \(\left(x^2+x\right)\)là \(y\)
ta có: \(3y^2-7y+4\)\(=0\)
<=>\(\left(3y-4\right)\left(y-1\right)=0\)
còn lại bạn tự xử nhé
Bài 3:
a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)
\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)
Vì \(3\ne0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)
b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)
c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)
\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)
Chúc bạn học tốt!
\(\left(x-2\right)^2+\left|x-5\right|-x^2-14=0.\)
\(\left(x^2-4x+4\right)+\left|x-5\right|-x^2-14=0.\)
\(x\text{}\text{}\text{}^2-4x+4+\left|x-5\right|-x^2-14=0.\)
\(x\text{}\text{}\text{}^2-x^2-4x+4-14+\left|x-5\right|=0.\)
\(-4x-10+\left|x-5\right|=0\)
.. đến đây xét tiếp để ra kq ạ -,-
a, \(\left(x^2+x\right)^2+4\left(x^2+x\right)-12=0\)
\(\Leftrightarrow x^4+2x^3+x^2+4x^2+4x+12=0\)
\(\Leftrightarrow x^4+2x^3+5x^2+4x-12=0\)
\(\Leftrightarrow x^4-x^3+3x^3-3x^2+8x^2-8x+12x-12=0\)
\(\Leftrightarrow x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^3+3x^2+8x+12\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^3+2x^2+x^2+2x+6x+12\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2+x+6\right)\left(x+2\right)\left(x-1\right)=0\)
có : \(x^2+x+6>0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}}\)
b, \(\left(x-1\right)\left(x-3\right)\left(x+5\right)\left(x+7\right)-297=0\)
\(\Leftrightarrow\left[\left(x-1\right)\left(x+5\right)\right]\left[\left(x-3\right)\left(x+7\right)\right]-297=0\)
\(\Leftrightarrow\left(x^2+4x-5\right)\left(x^2+7x-21\right)-297=0\)
đặt \(x^2+4x-13=t\)
\(\Leftrightarrow\left(t+8\right)\left(t-8\right)-297=0\)
\(\Leftrightarrow t^2-64-297=0\)
\(\Leftrightarrow t^2=361\)
\(\Leftrightarrow t=\pm19\)
có t rồi tìm x thôi