K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 3 2021

- Với \(x=\left\{100;101\right\}\) là 2 nghiệm của pt

- Với \(x< 100\Rightarrow\left\{{}\begin{matrix}\left|x-100\right|>0\\\left|x-101\right|=\left|101-x\right|>1\end{matrix}\right.\)

\(\Rightarrow\left|x-100\right|^{100}+\left|x-101\right|^{101}>1\) ptvn

- Với \(x>101\Rightarrow\left\{{}\begin{matrix}\left|x-101\right|>0\\\left|x-100\right|>1\end{matrix}\right.\) 

\(\Rightarrow\left|x-100\right|^{100}+\left|x-101\right|^{101}>1\) ptvn

- Với \(100< x< 101\Rightarrow\left\{{}\begin{matrix}0< x-100< 1\\0< 101-x< 1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left|x-100\right|^{100}< x-100\\\left|x-101\right|^{101}=\left|101-x\right|^{101}< 101-x\end{matrix}\right.\)

\(\Rightarrow\left|x-100\right|^{100}+\left|x-101\right|^{101}< x-100+101-x=1\) ptvn

Vậy pt có đúng 2 nghiệm \(x=\left\{100;101\right\}\)

a: \(\Leftrightarrow\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{9}-\dfrac{1}{10}\right)\cdot\left(x-1\right)+\dfrac{1}{10}x-x=-\dfrac{9}{10}\)

\(\Leftrightarrow\dfrac{9}{10}x-\dfrac{9}{10}-\dfrac{9}{10}x=-\dfrac{9}{10}\)

=>-9/10=-9/10(luôn đúng)

b: \(\Leftrightarrow\dfrac{195x+195+130x+195+117x+195+100x+195}{195}=\dfrac{22\cdot39+4\cdot65+6\cdot39+40\cdot5}{195}\)

=>347x+780=1552

=>347x=772

hay x=772/347

9 tháng 6 2018

=> ĐK:  \(x\ne\left\{0;-1;-2;...;-99;-100\right\}\)

Đây là dạng dãy số đặc biệt, bạn có thể giải như sau:

Ta có:

\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+99\right)\left(x+100\right)}=\frac{100}{101}\)

\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+99}-\frac{1}{x+100}=\frac{100}{101}\)

\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+100}=\frac{100}{101}\)

\(\Leftrightarrow\frac{x+100-x}{x.\left(x+100\right)}=\frac{100}{101}\)

\(\Leftrightarrow\frac{100}{x^2+100x}=\frac{100}{101}\)

\(\Leftrightarrow x^2+100x=101\)

\(\Leftrightarrow x^2+100x-101=0\)

\(\Leftrightarrow x^2+101x-x-101=0\)

\(\Leftrightarrow x\left(x+101\right)-\left(x+101\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+101\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+101=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\left(n\right)\\x=-101\left(n\right)\end{cases}}\)

Vậy: S={1;-101)

23 tháng 5 2016

Nhận xét :

\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)

Vì \(x\ge0\) nên pt a) tương đương với : \(100x+\frac{1+2+3+...+100}{101}=101x\)

\(\Leftrightarrow x=\frac{100.101}{2.101}=50\)

23 tháng 5 2016

b) 

Tương tự câu a) , phương trình tương đương với : 

\(49x+\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{...1}{97.99}=50x\)

\(\Rightarrow x=\frac{97}{195}\)

9 tháng 6 2018

\(\frac{\left(x+1\right)-x}{x\left(x+1\right)}+\frac{\left(x+2\right)-\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}+...+\frac{\left(x+100\right)-\left(x+99\right)}{\left(x+99\right)\left(x+100\right)}=\frac{100}{101}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+99}-\frac{1}{x+100}=\frac{100}{101}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+100}=\frac{100}{101}\)
Tự giải nha

9 tháng 6 2018

1/x -1/x+100 = 100/101

7 tháng 7 2018

1)

\(\dfrac{x-5}{100}+\dfrac{x-4}{101}+\dfrac{x-3}{102}=\dfrac{x-100}{5}+\dfrac{x-101}{4}+\dfrac{x-102}{3}\)

\(\Leftrightarrow\dfrac{x-5}{100}+1+\dfrac{x-4}{101}+1+\dfrac{x-3}{102}+1=\dfrac{x-100}{5}+1+\dfrac{x-101}{4}+1+\dfrac{x-102}{3}+1\)

\(\Leftrightarrow\dfrac{x-105}{100}+\dfrac{x-105}{101}+\dfrac{x-105}{102}=\dfrac{x-105}{5}+\dfrac{x-105}{4}+\dfrac{x-105}{3}+\dfrac{x-105}{2}\)

\(\Leftrightarrow\dfrac{x-105}{100}+\dfrac{x-105}{101}+\dfrac{x-105}{102}-\dfrac{x-105}{5}-\dfrac{x-105}{4}-\dfrac{x-105}{3}-\dfrac{x-105}{2}=0\)

\(\Leftrightarrow\left(x-105\right)\left(\dfrac{1}{100}+\dfrac{1}{101}+\dfrac{1}{102}-\dfrac{1}{5}-\dfrac{1}{4}-\dfrac{1}{3}-\dfrac{1}{2}\right)=0\)\(\Leftrightarrow105-x=0\)

\(\Leftrightarrow x=105\)

b)

\(\dfrac{29-x}{21}+\dfrac{27-x}{23}+\dfrac{25-x}{25}+\dfrac{23-x}{27}+\dfrac{21-x}{29}=0\)

\(\Leftrightarrow\dfrac{29-x}{21}+1+\dfrac{27-x}{23}+1+\dfrac{25-x}{25}+1+\dfrac{23-x}{27}+1+\dfrac{21-x}{29}+1=0\)

\(\Leftrightarrow\dfrac{50-x}{21}+\dfrac{50-x}{23}+\dfrac{50-x}{25}+\dfrac{20-x}{27}+\dfrac{50-x}{29}=0\)

\(\Leftrightarrow\left(50-x\right)\left(\dfrac{1}{21}+\dfrac{1}{23}+\dfrac{1}{25}+\dfrac{1}{27}+\dfrac{1}{29}\right)=0\)

\(\Leftrightarrow50-x=0\)

\(\Leftrightarrow x=50\)

7 tháng 7 2018

2)

\(\left(5x+1\right)^2=\left(3x-2\right)^2\)

\(\Leftrightarrow\left|5x+1\right|=\left|3x-2\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}5x+1=3x-2\\5x+1=-3x+2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{2}\\x=\dfrac{1}{8}\end{matrix}\right.\)

b) \(\left(x+2\right)^3=\left(2x+1\right)^3\)

\(\Leftrightarrow x^3+6x^2+12x+8=8x^3+12x^2+6x+1\)

\(\Leftrightarrow-7x^3-6x^2+6x+7=0\)

\(\Leftrightarrow-7x^3+7x^2-13x^2+13x-7x+7=0\)

\(\Leftrightarrow-7x^2\left(x-1\right)-13x\left(x-1\right)-7\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(-7x^2-13x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\-7x^2-13x-7=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\-7\left(x^2+\dfrac{13}{7}x+1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\-7\left(x+\dfrac{13}{14}\right)^2-\dfrac{169}{196}=0\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow x=1\)

13 tháng 2 2017

Ta có: \(\left|x+\frac{1}{1.5}\right|+\left|x+\frac{1}{5.9}\right|+\left|x+\frac{1}{9.13}\right|+...+\left|x+\frac{1}{397.401}\right|\ge0\)

\(\Rightarrow101x\ge0\)

\(\Rightarrow x\ge0\)

\(\Rightarrow x+\frac{1}{1.5}+x+\frac{1}{5.9}+...+x+\frac{1}{397.401}=101x\)

\(\Rightarrow100x+\left(\frac{1}{1.5}+\frac{1}{5.9}+...+\frac{1}{397.401}\right)=101x\)

\(\Rightarrow\frac{1}{4}\left(\frac{4}{1.5}+\frac{4}{5.9}+...+\frac{4}{397.401}\right)=x\)

\(\Rightarrow x=\frac{1}{4}\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{397}-\frac{1}{401}\right)\)

\(\Rightarrow x=\frac{1}{4}\left(1-\frac{1}{401}\right)\)

\(\Rightarrow x=\frac{1}{4}.\frac{400}{401}\)

\(\Rightarrow x=\frac{100}{401}\)

Vậy...

d: \(\Leftrightarrow x^3+6x^2+12x+8-x^3+6x^2-12x+8=12x^2-12x-8\)

\(\Leftrightarrow12x^2+16=12x^2-12x-8\)

=>-12x=24

hay x=-2

e: \(\left(x+5\right)\left(x+2\right)-3\left(4x-3\right)=\left(x-5\right)^2\)

\(\Leftrightarrow x^2+7x+10-12x+9=x^2-10x+25\)

=>-5x+19=-10x+25

=>5x=6

hay x=6/5

f: \(\dfrac{x-5}{100}+\dfrac{x-4}{101}+\dfrac{x-3}{102}=\dfrac{x-100}{5}+\dfrac{x-101}{4}+\dfrac{x-102}{3}\)

=>x-105=0

hay x=105

18 tháng 10 2020

a) ( x2 - 1 )( x - 101 ) + 101x( x + 1 ) = 101

<=> x3 - 101x2 - x + 101 + 101x2 + 101x - 101 = 0

<=> x3 + 100x = 0

<=> x( x2 + 100 ) = 0

<=> \(\orbr{\begin{cases}x=0\\x^2+100=0\end{cases}}\Leftrightarrow x=0\)( vì x2 + 100 ≥ 100 > 0 ∀ x )

b) x4 - 3x2( 2x - 3 ) = 0

<=> x4 - 6x3 + 9x2 = 0

<=> x2( x2 - 6x + 9 ) = 0

<=> x2( x - 3 )2 = 0

<=> \(\orbr{\begin{cases}x^2=0\\\left(x-3\right)^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)

18 tháng 10 2020

a,\(\left(x^2-1\right)\left(x-101\right)+101x\left(x+1\right)=101\)

\(\Leftrightarrow x^3-101x^2-x+101+101x^2+101x=101\)

\(\Leftrightarrow x^3+100x=101-101\)

\(\Leftrightarrow x^3+101x=0\)

\(\Leftrightarrow x\left(x^2+101\right)=0\)

\(\Rightarrow\hept{\begin{cases}x=0\\x^2+101\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x^2=-101\end{cases}\Rightarrow}x=0}\)