Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cái bài đầu giải BPT bn ghi cái dj ak ,mik cx k hỉu nữa
V mik giải bài 2 nghen, sửa lại đề bài đầu rồi mik giải cho
\(3x-3=|2x+1|\)
Điều kiện: \(3x-3\ge0\Leftrightarrow3x\ge3\Leftrightarrow x\ge1\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=3x-3\\2x+1=-3x+3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3x=-1-3\\2x+3x=-1+3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-x=-3\\5x=2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\left(n\right)\\x=\frac{2}{5}\left(l\right)\end{cases}}}\)
Vậy S={3}
Cài đề câu b ,bn xem lại nhé!
\(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}>\frac{x^2}{7}-\frac{2x-3}{5}\)
\(\Leftrightarrow\frac{2x-3}{35}+\frac{5x\left(x-2\right)}{35}-\frac{5x^2}{35}+\frac{7\left(2x-3\right)}{35}>0\)
\(\Leftrightarrow2x-3+5x\left(x-2\right)-5x^2+7\left(2x-3\right)>0\)
\(\Leftrightarrow2x-3+5x^2-10x-5x^2+14x-21>0\)
\(\Leftrightarrow6x-24>0\)
\(\Leftrightarrow x>4\)
VẬY TẬP NGHIỆM CỦA BẤT PHƯƠNG TRÌNH LÀ : S = { \(x\text{\x}>4\)}
\(\frac{6x+1}{18}+\frac{x+3}{12}\le\frac{5x+3}{6}+\frac{12-5x}{9}\)
\(\Leftrightarrow\frac{6\left(6x+1\right)}{108}+\frac{9\left(x+3\right)}{108}\le\frac{18\left(5x+3\right)}{108}+\frac{12\left(12-5x\right)}{108}\)
\(\Leftrightarrow36x+6+9x+27\le90x+54+144-60x\)
\(\Leftrightarrow36x+6+9x+27-90x-54-144+60x\le0\)
\(\Leftrightarrow15x-165\le0\)
\(\Leftrightarrow x\le11\)
VẬY TẬP NGHIỆM CỦA BẤT PHƯƠNG trình ..........
tk mk nka !!! chúc bạn học tốt !!!
\(\frac{x+2}{x+1}+\frac{3}{x-2}=\frac{3}{x^2-x-x}+1\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}+\frac{3\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=\frac{3}{\left(x+1\right)\left(x-2\right)}+\frac{\left(x+1\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}\)
\(\Rightarrow x^2-4+3x+3=3+x^2-2x+x-2\)
\(\Leftrightarrow x^2-x^2+3x+2x-x=1+4-3\)
\(\Leftrightarrow4x=2\)
\(\Leftrightarrow x=\frac{1}{2}\)
\(a,\frac{3}{x^2+x-2}-\frac{1}{x-1}=\frac{-7}{x+2}\left(x\ne1;x\ne-2\right)\)
\(\Leftrightarrow\frac{3}{x^2+x-2}-\frac{1}{x-1}+\frac{7}{x+2}=0\)
\(\Leftrightarrow\frac{3}{\left(x-1\right)\left(x+2\right)}-\frac{1\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}+\frac{7\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{3}{\left(x-1\right)\left(x+2\right)}-\frac{x+2}{\left(x-1\right)\left(x+2\right)}+\frac{7x-7}{\left(x-1\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{3-x-2+7x-7}{\left(x-1\right)\left(x+2\right)}=0\)
\(\Leftrightarrow\frac{6x-8}{\left(x-1\right)\left(x+2\right)}=0\)
=> 6x-8=0
<=> x=\(\frac{8}{6}=\frac{4}{3}\left(tmđk\right)\)
b) ĐKXĐ: x khác 2; x khác 4
\(\frac{2}{-x^2+6x-8}-\frac{x-1}{x-2}=\frac{x+3}{x-4}\)
<=> \(\frac{2}{\left(x-2\right)\left(x-4\right)}+\frac{x-1}{x-2}=\frac{x+3}{x-4}\)
<=> 2(x - 2) + (x - 1)(x - 4)(x - 2) = (x + 3)(x - 2)(x - 2)
<=> x^3 - 7x^2 + 16x - 12 = -x^3 + x^2 + 8x - 12
<=> x^2 - 7x^2 + 16x - 12 + x^3 - x^2 + 8x - 12 = 0
<=> 2x^3 - 8x^2 + 8x = 0
<=> 2x(x - 2)(x - 2) = 0
<=> 2x = 0 hoặc x - 2 = 0
<=> x = 0 (tmđk) hoặc x = 2 (ktmđk)
=> x = 2
\(\frac{x+2}{x+1}+\frac{3}{x-2}=\frac{3}{x^2-x-2}+1\)
\(\frac{\left(x+2\right)\left(x-2\right)+3\left(x+1\right)}{x^2-x-2}=\frac{3+x^2-x-2}{x^2-x-2}\)
\(x^2-4+3x+3=1+x^2-x\)
\(x^2+3x-1-1-x^2+x=0\)
\(4x-2=0\)
\(4x=2\Leftrightarrow x=\frac{1}{2}\)
Vậy.....
\(\frac{x+2}{x+1}+\frac{3}{x-2}=\frac{3}{x^2-x-2}+1\)
\(\Leftrightarrow\)\(\frac{x+2}{x+1}+\frac{3}{x-2}=\frac{3}{\left(x+1\right).\left(x-2\right)}+1\)
ĐKXĐ: \(x\ne-1,2\)
\(\frac{\left(x+2\right).\left(x-2\right)}{\left(x+1\right).\left(x-2\right)}+\)\(\frac{3.\left(x+1\right)}{\left(x+1\right).\left(x-2\right)}=\)\(\frac{3}{\left(x+1\right).\left(x-2\right)}+\frac{\left(x+1\right).\left(x-2\right)}{\left(x+1\right).\left(x-2\right)}\)
\(\Leftrightarrow\) \(\left(x^2-4\right)\) \(+3.\left(x+1\right)=\)\(3+\left(x+1\right).\left(x-2\right)\)
\(\Leftrightarrow\) x2 - 4 + 3x + 3 = 3 + x2 - x - 2
\(\Leftrightarrow\) x2 + 3x - x2 + x = 4 - 3 + 3 - 2
\(\Leftrightarrow\) 4x = 2
\(\Leftrightarrow\)\(x=\frac{1}{2}\)
Vậy phương trình có nghiệm là: \(x=\frac{1}{2}\)
a) \(\frac{x-1}{2}+\frac{x-2}{3}+\frac{x-3}{4}=\frac{x-4}{5}+\frac{x-5}{6}\)
\(\left(\frac{x-1}{2}+1\right)+\left(\frac{x-2}{3}+3\right)+\left(\frac{x-3}{4}+1\right)=\left(\frac{x-4}{5}+1\right)+\left(\frac{x-5}{6}+1\right)\)
\(\frac{x-1}{2}+\frac{x-1}{3}+\frac{x-1}{4}=\frac{x-1}{5}+\frac{x-1}{6}\)
\(\left(x-1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\right)\)=0
\(x-1=0\)
\(x=1\)
ĐK: x \(\ne\)-1; x \(\ne\)2
\(\frac{x+2}{x+1}+\frac{3}{x-2}=\frac{3}{x^2-x-2}+1\)
<=> \(\frac{\left(x+2\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}+\frac{3\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\frac{3}{\left(x+1\right)\left(x-2\right)}+\frac{\left(x+1\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}\)
<=> x2 - 4 + 3x + 3 = 3 + x2 - x - 2
<=> x2 + 3x - x2 + x = 1 + 1
<=> 4x = 2
<=> x = 1/2
Vậy S = {1/2}
b) \(\frac{x-3}{x-2}+\frac{x+2}{x-4}=-1\)
\(\Rightarrow\frac{\left(x-3\right)\left(x-4\right)}{\left(x-2\right)\left(x-4\right)}+\frac{\left(x-2\right)\left(x-2\right)}{\left(x-2\right)\left(x-4\right)}=-1\)
\(\Rightarrow\frac{\left(x-3\right)\left(x-4\right)+x^2-4}{\left(x-2\right)\left(x-4\right)}=-1\)
\(\Rightarrow\frac{x^2-7x+12+x^2-4}{\left(x-2\right)\left(x-4\right)}=-1\)
\(\Rightarrow\frac{2x^2-7x+8}{\left(x-2\right)\left(x-4\right)}=-1\)
\(\Rightarrow\frac{2x^2-7x+8}{\left(x-2\right)\left(x-4\right)}=-1\)
.................
a) \(\frac{2}{x-1}+\frac{2x+3}{x^2+x+1}=\frac{\left(2x-1\right)\left(2x+1\right)}{x^3-1}\)
\(\Rightarrow\frac{2\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{\left(2x+3\right)\left(x-1\right)}{\left(x+1\right)\left(x^2+x+1\right)}=\frac{\left(2x-1\right)\left(2x+1\right)}{x^3-1}\)
\(\Rightarrow\frac{2\left(x^2+x+1\right)+\left(2x+3\right)\left(x-1\right)}{x^3-1}=\frac{\left(2x-1\right)\left(2x+1\right)}{x^3-1}\)
\(\Rightarrow\left(x^3-1\right)\left[2\left(x^2+x+1\right)+\left(2x+3\right)\left(x-1\right)\right]=\left(x^3-1\right)\left(2x-1\right)\left(2x+1\right)\)
\(\Rightarrow2\left(x^2+x+1\right)+\left(2x+3\right)\left(x-1\right)=\left(2x-1\right)\left(2x+1\right)\)
\(\Rightarrow2\left(x^2+x+1\right)+\left(2x+3\right)\left(x-1\right)-\left(2x-1\right)\left(2x+1\right)=0\)
\(\Rightarrow2x^2+2x+2+2x^2-2x+3x-3-\left(4x^2-1\right)=0\)
\(\Rightarrow2x^2+2x+2+2x^2-2x+3x-3-4x^2+1=0\)
\(\Rightarrow3x=0\)
\(\Rightarrow luon-dung-voi-moi-x\)
\(\frac{2}{x^3-x^2-x+1}=\frac{3}{1-x^2}-\frac{1}{x+1}\)
<=> \(\frac{2}{\left(x^2-1\right)\left(x-1\right)}+\frac{3}{\left(x-1\right)\left(x+1\right)}+\frac{1}{x+1}=0\)
<=> \(\frac{2}{\left(x-1\right)^2\left(x+1\right)}+\frac{3\left(x-1\right)}{\left(x-1\right)^2\left(x+1\right)}+\frac{\left(x-1\right)^2}{\left(x-1\right)^2\left(x+1\right)}=0\)
<=> \(2+3x-3+x^2-2x+1=0\)
<=> x2 + x = 0
<=> x(x + 1) = 0
<=> \(\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Vậy S = {0; -1}