Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge1\\\frac{-1-\sqrt{5}}{4}\le x\le-\frac{1}{8}\end{matrix}\right.\)(Có thể chưa chính xác)
\(12x^2+16x+1=2\sqrt{24x^3+12x^2-6x}+4\sqrt{x^2-x}+4\sqrt{8x^3+9x^2+x}\)
Áp dụng AM-GM:
\(2\sqrt{24x^3+12x^2-6x}=2\sqrt{6x\left(4x^2+2x-1\right)}\le6x+\left(4x^2+2x-1\right)=4x^2+8x-1\left(1\right)\)
\(4\sqrt{x^2-x}=2\sqrt{1.\left(4x^2-4x\right)}\le4x^2-4x+1\left(2\right)\)
\(4\sqrt{8x^3+9x^2+x}=2\sqrt{\left(4x^2+4x\right)\left(8x+1\right)}\le\left(4x^2+4x\right)+\left(8x+1\right)=4x^2+12x+1\left(3\right)\)
Cộng \(\left(1\right),\left(2\right),\left(3\right)\), ta có: \(VP\le VT\)
Dấu ''='' xảy ra khi :
\(\left\{{}\begin{matrix}4x^2+2x-1=6x\\4x^2-4x=1\\4x^2+4x=8x+1\end{matrix}\right.\)\(\Rightarrow4x^2-4x-1=0\)
\(\Rightarrow x=\frac{1\pm\sqrt{2}}{2}\) (t/m ĐKXĐ)
1) ĐK: \(x\ge-1\)
\(\sqrt{9x^2+9x+4}>9x+3-\sqrt{x+1}\)
<=> \(\sqrt{9x^2+9x+4}+\sqrt{x+1}>9x+3\)(1)
TH1: 9x + 3 \(\le\)0 <=> x\(\le-\frac{1}{3}\)
(1) luôn đúng
Th2: x\(>-\frac{1}{3}\)
<=> \(\left(\frac{1}{2}x+1-\sqrt{x+1}\right)+\left(\frac{17}{2}x+2-\sqrt{9x^2+9x+4}\right)< 0\)
<=> \(\frac{\frac{1}{4}x^2}{\frac{1}{2}x+1+\sqrt{x+1}}+\frac{\frac{253}{4}x^2}{\frac{17}{2}x+2+\sqrt{9x^2+9x+4}}< 0\)
<=> \(\frac{x^2}{4}\left(\frac{1}{\frac{1}{2}x+1+\sqrt{x+1}}+\frac{253}{\frac{17}{2}x+2+\sqrt{9x^2+9x+4}}\right)< 0\)vô nghiệm
Vì với x \(>-\frac{1}{3}\):
ta có: \(\frac{1}{2}x+1+\sqrt{x+1}>0\)
\(\frac{17}{2}x+2+\sqrt{9x^2+9x+4}=\frac{17}{2}x+2+\sqrt{3\left(x+\frac{1}{2}\right)^2+\frac{7}{4}}>\frac{17}{2}x+2+1>0\)
=> \(\left(\frac{1}{\frac{1}{2}x+1+\sqrt{x+1}}+\frac{253}{\frac{17}{2}x+2+\sqrt{9x^2+9x+4}}\right)>0\)với x \(>-\frac{1}{3}\) và \(x^2\ge0\)với mọi x
=> \(\frac{x^2}{4}\left(\frac{1}{\frac{1}{2}x+1+\sqrt{x+1}}+\frac{253}{\frac{17}{2}x+2+\sqrt{9x^2+9x+4}}\right)\ge0\)với x\(>-\frac{1}{3}\)
Vậy \(x< -\frac{1}{3}\)
Xin lỗi bạn kết luận bài 1 là:
\(-1\le x\le-\frac{1}{3}\)
Bài 2) \(2+\sqrt{x+2}-x\sqrt{x+2}=x\left(\sqrt{x+2}-x\right)\)(2)
ĐK: \(x\ge-2\)
(2) <=> \(2+\sqrt{x+2}+x^2-2x\sqrt{x+2}=0\)
<=> \(8+4\sqrt{x+2}+4x^2-8x\sqrt{x+2}=0\)
<=> \(\left(2x-1\right)^2-4\left(2x-1\right)\sqrt{x+2}+4\left(x+2\right)-1=0\)
<=> \(\left(2x-1-2\sqrt{x+2}\right)^2-1=0\)
<=> \(\left(x-1-\sqrt{x+2}\right)\left(x-\sqrt{x+2}\right)=0\)
<=> \(\orbr{\begin{cases}x-1=\sqrt{x+2}\left(3\right)\\x=\sqrt{x+2}\left(4\right)\end{cases}}\)
(3) <=> \(\hept{\begin{cases}x\ge1\\x^2-3x-1=0\end{cases}}\Leftrightarrow x=\frac{3+\sqrt{13}}{2}\left(tm\right)\)
(4) <=> \(\hept{\begin{cases}x\ge0\\x^2-x-2=0\end{cases}\Leftrightarrow}x=2\left(tm\right)\)
Kết luận:...
đề đungs \(\sqrt{10x+1}+\sqrt{3x-5}=\sqrt{9x+4}+\sqrt{2x-2}\). ĐK: \(x\ge\frac{5}{3}\)
\(\Leftrightarrow\)\(\sqrt{10x+1}-\sqrt{9x+4}+\sqrt{3x-5}-\sqrt{2x-2}=0\)
\(\Leftrightarrow\)\(\frac{10x+1-9x-4}{\sqrt{10x+1}+\sqrt{9x+4}}+\frac{3x-5-2x+2}{\sqrt{3x-5}+\sqrt{2x-2}}=0\)
\(\Leftrightarrow\)\(\left(x-3\right)\left(\frac{1}{\sqrt{10x+1}+\sqrt{9x+4}}+\frac{1}{\sqrt{3x-5}+\sqrt{2x-2}}\right)=0\)
\(\Leftrightarrow\)\(x=3\) ( nhan )
ĐKXĐ: ..
Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2+21x-11}=a\\\sqrt{2x-1}=b\end{matrix}\right.\)
\(a-\sqrt{a^2-15b^2}=b\)
\(\Leftrightarrow a-b=\sqrt{a^2-15b^2}\) (\(a\ge b\))
\(\Rightarrow a^2-2ab+b^2=a^2-15b^2\)
\(\Leftrightarrow8b^2-ab=0\)
\(\Leftrightarrow\left[{}\begin{matrix}b=0\\a=8b\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}2x-1=0\\\sqrt{2x^2+21x-11}=8\sqrt{2x-1}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\2x^2+21x-11=64\left(2x-1\right)\end{matrix}\right.\)
Answer:
b) \(2\sqrt{x+3}=9x^2-x-4\)
ĐK: x\(x\ge-3\) phương trình tương đương:
Ta có: \(2\sqrt{x+3}=9x^2-x-4\)
\(\Leftrightarrow x+4+2\sqrt{x+3}=9x^2\)
\(\Leftrightarrow x+3+2\sqrt{x+3}+1=9x^2\)
\(\Leftrightarrow\left(1+\sqrt{3+x}\right)^2=9x^2\)
\(\left(1+\sqrt{3+x}\right)^2=9x^2\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+3}+1=3x\\\sqrt{x+3}+1=-3x\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{-5-\sqrt{97}}{18}\end{cases}}\)