K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2021

Pt\(\Leftrightarrow3\left(cos^2x-sin^2x\right)-8.sinx.cosx=sin^2x+cos^2x\)

\(\Leftrightarrow2cos^2x-8sinx.cosx-4sin^2x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=\left(2+\sqrt{6}\right)sinx\\cosx=\left(2-\sqrt{6}\right)sinx\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=\dfrac{1}{2+\sqrt{6}}\\tanx=\dfrac{1}{2-\sqrt{6}}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=arc.tan\left(\dfrac{1}{2+\sqrt{6}}\right)+k\pi\\x=arc.tan\left(\dfrac{1}{2-\sqrt{6}}\right)+k\pi\end{matrix}\right.\), k nguyên

Vậy...

12 tháng 12 2017

NV
10 tháng 10 2020

\(\Leftrightarrow\frac{4sin2x+cos2x+17}{3cos2x+sin2x+m+1}-2\ge0\) (tất nhiên là với mọi x)

\(\Leftrightarrow\frac{2sin2x-5cos2x-2m+15}{3cos2x+sin2x+m+1}\ge0\)

TH1: \(\left\{{}\begin{matrix}2sin2x-5cos2x-2m+15\ge0\\3cos2x+sin2x+m+1>0\end{matrix}\right.\) ;\(\forall x\)

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{2}{\sqrt{29}}sin2x-\frac{5}{\sqrt{29}}cos2x\ge\frac{2m-15}{\sqrt{29}}\\\frac{1}{\sqrt{10}}sin2x+\frac{3}{\sqrt{10}}cos2x>\frac{-m-1}{\sqrt{10}}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}sin\left(2x-a\right)\ge\frac{2m-15}{\sqrt{29}}\\sin\left(2x+b\right)>\frac{-m-1}{\sqrt{10}}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{2m-15}{\sqrt{29}}\le-1\\\frac{-m-1}{\sqrt{10}}< -1\end{matrix}\right.\) tới đây chắc bạn tự giải được

TH2: tương tự:

\(\left\{{}\begin{matrix}2sin2x-5cos2x-2m+15\le0\\3cos2x+sin2x+m+1< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{2m-15}{\sqrt{29}}\ge1\\\frac{-m-1}{\sqrt{10}}>1\end{matrix}\right.\) \(\Leftrightarrow...\)

NV
17 tháng 10 2019

a/ \(-1\le sin2x\le1\Rightarrow-7\le y\le-1\)

b/ \(-1\le cos2x\le1\Rightarrow1\le y\le7\)

c/ \(-1\le sin2x\le1\Rightarrow3\le y\le11\)

d/ \(-1\le cos\left(3x+\frac{\pi}{3}\right)\le1\Rightarrow8\le y\le12\)

NV
8 tháng 6 2019

Đặt \(\left|sinx-cosx\right|=a\) (\(0\le a\le\sqrt{2}\))

\(\Rightarrow1-2sinx.cosx=a^2\Rightarrow1-sin2x=a^2\Rightarrow sin2x=1-a^2\)

Phương trình trở thành:

\(a+4\left(1-a^2\right)=1\Leftrightarrow-4a^2+a+3=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-\frac{3}{4}< 9\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\left|sinx-cosx\right|=1\Leftrightarrow\left|\sqrt{2}sin\left(x-\frac{\pi}{4}\right)\right|=1\)

\(\Leftrightarrow\left|sin\left(x-\frac{\pi}{4}\right)\right|=\frac{\sqrt{2}}{2}\Rightarrow\left[{}\begin{matrix}sin\left(x-\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\\sin\left(x-\frac{\pi}{4}\right)=\frac{-\sqrt{2}}{2}\end{matrix}\right.\) \(\Rightarrow...\)

AH
Akai Haruma
Giáo viên
24 tháng 7 2020

m)

$\sin 4x-\cos ^4x=\cos x-2$

$\Leftrightarrow (\sin ^2x+\cos ^2x)(\sin ^2x-\cos ^2x)=\cos x-2$

$\Leftrightarrow \sin ^2x-\cos ^2x=\cos x-2$

$\Leftrightarrow 1-2\cos ^2x=\cos x-2$

$\Leftrightarrow 2\cos ^2x+\cos x-3=0$

$\Leftrightarrow (2\cos x+3)(\cos x-1)=0$

Nếu $2\cos x+3=0\Rightarrow \cos x=\frac{-3}{2}< -1$ (loại)

Nếu $\cos x-1=0\Rightarrow \cos x=1\Rightarrow x=2k\pi$ với $k$ nguyên

AH
Akai Haruma
Giáo viên
24 tháng 7 2020

k) ĐK:.......

$\tan ^25x=\frac{1}{3}\Rightarrow \tan 5x=\pm \sqrt{\frac{1}{3}}$

$\Rightarrow 5x=k\pi +\tan ^{-1}\frac{\pm 1}{\sqrt{3}}$

$\Rightarrow x=frac{k}{5}\pi +\tan ^{-1}\frac{\pm 1}{\sqrt{3}}$ với $k$ nguyên.

Số đẹp hơn thì có thể giải như sau:

$PT \Leftrightarrow \frac{\sin ^25x}{\cos ^25x}=\frac{1}{3}$

$\Rightarrow 3\sin ^25x=\cos ^25x$

$\Rightarrow 4\\sin ^25x=1\Rightarrow \sin 5x=\pm \frac{1}{2}$

$\Rightarrow x=\frac{k\pi}{5}\pm \frac{\pi}{30}$ với $k$ nguyên.

30 tháng 7 2019
https://i.imgur.com/KvsO0S0.jpg
30 tháng 7 2019

đúng y như trong đề luôn mà bạn , hay là bạn có tính sai chỗ nào đó rồi không

NV
18 tháng 7 2020

a/

\(\Leftrightarrow\left(sinx-1\right)\left(sinx-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}sinx=1\\sinx=4\left(vn\right)\end{matrix}\right.\) \(\Rightarrow x=\frac{\pi}{2}+k2\pi\)

b/

\(\Leftrightarrow\left(cos2x-1\right)\left(2cosx-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}cosx=1\\cosx=\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pm\frac{\pi}{3}+k2\pi\end{matrix}\right.\)

c/

\(\Leftrightarrow\left(sin3x-\frac{3}{4}\right)^2+\frac{7}{16}=0\)

Vế trái luôn dương nên pt vô nghiệm