K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2017

a ĐK \(x\ge0\)

\(3x-7\sqrt{x}+4=0\Rightarrow\left(\sqrt{x}-1\right)\left(3\sqrt{x}-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-1=0\\3\sqrt{x}-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=1\\\sqrt{x}=\frac{4}{3}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x=\frac{16}{9}\end{cases}\left(tm\right)}}\)

b. ĐK \(x\ge2\)

\(\Leftrightarrow\sqrt{x+1}.\sqrt{x-1}=\sqrt{x+3}.\sqrt{x-2}\)

\(\Leftrightarrow\sqrt{x^2-1}=\sqrt{x^2+x-6}\)

\(\Leftrightarrow x^2-1=x^2-x+6\Leftrightarrow x=5\left(tm\right)\)

Các câu còn lại tương tự

3 tháng 7 2017

a ; \(3x-7\sqrt{x}+4=0 \) 
\(3x-3\sqrt{x}-4\sqrt{x}+4=0\)\(\left(\sqrt{x}-1\right)\left(3\sqrt{x}-4\right)=0\)

từ đó suy ra x

5 tháng 7 2017

Bạn giải cụ thể từng câu cho mk nhé!!! :))))

29 tháng 10 2020

a) \(\text{Đ}K\text{X}\text{Đ}:\frac{3}{2}\le x\le\frac{5}{2}\)

Áp dụng BĐT Bunhiacopxki ta có:

\(VT=\sqrt{2x-3}+\sqrt{5-2x}\le\sqrt{2\left(2x-3+5-2x\right)}=2\)

Dấu '=' xảy ra khi \(\sqrt{2x-3}=\sqrt{5-2x}\Leftrightarrow x=2\)

Lại có: \(VP=3x^2-12x+14=3\left(x-2\right)^2+2\ge2\)

Dấu '=' xảy ra khi x=2

Do đó VT=VP khi x=2

29 tháng 10 2020

b) ĐK: \(x\ge0\). Ta thấy x=0 k pk là nghiệm của pt, chia 2 vế cho x ta có:

\(x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\Leftrightarrow x-2-\sqrt{x}-\frac{2}{\sqrt{x}}+\frac{4}{x}=0\)

\(\Leftrightarrow\left(x+\frac{4}{x}\right)-\left(\sqrt{x}+\frac{2}{\sqrt{x}}\right)-2=0\)

Đặt \(\sqrt{x}+\frac{2}{\sqrt{x}}=t>0\Leftrightarrow t^2=x+4+\frac{4}{x}\Leftrightarrow x+\frac{4}{x}=t^2-4\), thay vào ta có:

\(\left(t^2-4\right)-t-2=0\Leftrightarrow t^2-t-6=0\Leftrightarrow\left(t-3\right)\left(t+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t=3\\t=-2\end{cases}}\)

Đối chiếu ĐK  của t

\(\Rightarrow t=3\Leftrightarrow\sqrt{x}+\frac{2}{\sqrt{x}}=3\Leftrightarrow x-3\sqrt{x}+2=0\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=1\end{cases}}\)

11 tháng 8 2017

câu 2 có nghiệm x=2 , liên hợp đi 

27 tháng 7 2019

-1; -6

b) ĐK: \(x^2+7x+7\ge0\) (đk xấu quá em ko giải đc;v)

PT \(\Leftrightarrow3x^2+21x+18+2\left(\sqrt{x^2+7x+7}-1\right)=0\)

\(\Leftrightarrow3\left(x+1\right)\left(x+6\right)+2\left(\frac{x^2+7x+6}{\sqrt{x^2+7x+7}+1}\right)=0\)

\(\Leftrightarrow3\left(x+1\right)\left(x+6\right)+\frac{2\left(x+1\right)\left(x+6\right)}{\sqrt{x^2+7x+7}+1}=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+6\right)\left[3+\frac{1}{\sqrt{x^2+7x+7}+1}\right]=0\)

Hiển nhiên cái ngoặc vuông > 0 nên vô nghiệm suy ra x = -1 (TM) hoặc x = -6 (TM)

Vậy....

P/s: Cũng may nghiệm đẹp chứ chứ nghiệm xấu thì tiêu rồi:(

27 tháng 7 2019

chết, đánh nhầm dòng tương đương cuối:

\(\Leftrightarrow\left(x+1\right)\left(x+6\right)\left[3+\frac{2}{\sqrt{x^2+7x+7}+1}\right]=0\)

16 tháng 12 2017

a)x=6

b)x=6

d)x=0.2

6 tháng 7 2017

a. ĐK \(x\ge0\)và \(x\ne1\)

A =\(\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}}{\sqrt{x}+1}+\frac{\sqrt{x}}{1-\sqrt{x}}\right):\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{1-\sqrt{x}}{\sqrt{x}+1}\right)\)

\(=\frac{\left(\sqrt{x}+1\right)^2+\sqrt{x}\left(\sqrt{x}-1\right)-\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}:\frac{\cdot\left(\sqrt{x}+1\right)^2+\left(\sqrt{x}-1\right)\left(1-\sqrt{x}\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{x+2\sqrt{x}+1+x-\sqrt{x}-x-\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{x+2\sqrt{x}+1+\sqrt{x}-x-1+\sqrt{x}}\)

\(=\frac{x+1}{4\sqrt{x}}\)

b. Thay \(x=\frac{2-\sqrt{3}}{2}\Rightarrow A=\frac{\frac{2-\sqrt{3}}{2}+1}{4\sqrt{\frac{2-\sqrt{3}}{2}}}=\frac{4-\sqrt{3}}{4\left(\sqrt{3}-1\right)}=\frac{4-\sqrt{3}}{4-4\sqrt{3}}=-\frac{1+3\sqrt{3}}{8}\)

c . Ta có \(A-\frac{1}{2}=\frac{x+1}{4\sqrt{x}}-\frac{1}{2}=\frac{x-2\sqrt{x}+1}{4\sqrt{x}}=\frac{\left(\sqrt{x}-1\right)^2}{4\sqrt{x}}>0\)với \(\forall x>0\)và \(x\ne1\)

Vậy A >1/2

18 tháng 8 2020

lên hỏi đáp 247 hỏi cho nhanh !