K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2020

\(\left(2x-1\right)^2+\left(2-x\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(2x-1+2-x\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\x+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-1\end{cases}}\)

Vậy tập nghiệm của ptr là : \(S=\left\{\frac{1}{2};-1\right\}\)

20 tháng 1 2020

\(\left(2x-1\right)^2+\left(2-x\right)\left(2x-1\right)=0.\)

\(\Leftrightarrow4x^2-4x+1+4x-2-2x^2+x=0\)

\(\Leftrightarrow2x^2+x-1=0\)

\(\Leftrightarrow2x^2+2x-x-1=0\)

\(\Leftrightarrow\left(2x^2+2x\right)-\left(x+1\right)=0\)

\(\Leftrightarrow2x\left(x+1\right)-\left(x+1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)-\left(x+1\right)=0\)

TH1: 2x - 1 = 0

=> x = 1/2

Th2: x + 1 = 0

=> x = -1

\(\Rightarrow x\in\left\{\frac{1}{2};-1\right\}\)

30 tháng 1 2017

xin lỗi mk mới học lớp 6 nên ko biết!

ủng hộ mk nha!

30 tháng 1 2017

Phương trình... e k bt

 2x^4-9x^3+14x^2-9x+2=0 
vế trái có tổng các hệ số (2-9+14-9+2)=0 nến có 1 nghiêm x=1 
nên phân tích đc nhân tử là (x-1) 
2x^4-9x^3+14x^2-9x+2=0 <=> (x-1)(2x^3-7x^2+7x-2)=0 
<=> x=1 và 2x^3-7x^2+7x-2=0 
PT: 2x^3-7x^2+7x-2=0 cũng có tổng các hệ số (2-7+7-2)=0 nên cũng có 1 nghiệm là 1 => vế trái có thể phân tích đc nhân tử (x-1) 
2x^3-7x^2+7x-2=0 <=> (x-1)(2x^2-5x+2)=0 
<=> x=1 và 2x^2-5x+2=0 
2x^2-5x+2=0 <=> x^2 - (5/2)x + 1 =0 
<=> (x-5/4)^2 - 9/16 = 0 
<=> (x-5/4)^2 - (3/4)^2 = 0

4 tháng 1 2020

a) 2x-mx+2m-1=0

\(\Leftrightarrow x\left(2-m\right)=1-2m\left(1\right)\)

*Nếu \(m=2\)thay vào (1) ta được:

\(x\left(2-2\right)=1-2\cdot2\Leftrightarrow0x=-3\)

Với \(m=\frac{1}{2}\) ,pt trên vô nghiệm.

*Nếu \(m\ne2\)thì phương trình (1) có nghiệm  \(x=\frac{1-2m}{2-m}\)

Vậy  \(m\ne2\)thì phương trình có nghiệm duy nhất \(x=\frac{1-2m}{2-m}\)

b)c) mình biến đổi thôi, phần lập luận bạn tự lập luận nhé 

b)\(mx+4=2x+m^2\Leftrightarrow mx-2x=m^2-4\Leftrightarrow x\left(m-2\right)=\left(m-2\right)\left(m+2\right)\)

*Nếu \(m\ne2\).....pt có ngiệm x=m+2

*Nếu \(m=2\)....pt có vô số nghiệm

Vậy ....

c)\(\left(m^2-4\right)x+m-2=0\Leftrightarrow\left(m-2\right)\left(m+2\right)x=-\left(m-2\right)\)

Nếu \(m=2\).... pt có vô số nghiệm

Nếu \(m=-2\)..... pt vô nghiệm

Nếu \(m\ne\pm2\).... pt có nghiệm \(x=-m-2\)

Để nghiệm  \(x=-m-2\)dương \(\Leftrightarrow m+2< 0\Leftrightarrow m< -2\ne\pm2\)

Vậy m<-2

11 tháng 1 2016

 

( x2 - 2x +4 )( x+3x + 4 ) = 14x2

Đặt t=x2-2x+4 ta được:

t.(t+5x)=14x2

<=>t2+5tx=14x2

<=>t2+5tx-14x2=0

<=>t2-2tx+7tx-14x2=0

<=>t.(t-2x)+7x.(t-2x)=0

<=>(t-2x)(t+7x)=0

<=>t-2x=0 hoặc t+7x=0

<=>x2-2x+4-2x=0 hoặc x2-2x+4+7x=0

<=>x2-4x+4=0 hoặc x2+5x+4=0

<=>(x-2)2=0 hoặc x2+4x+x+4=0

<=>x-2=0 hoặc x.(x+4)+(x+4)=0

<=>x=2 hoặc (x+4)(x+1)=0

<=>x=2 hoặc x=-4 hoặc x=-1

11 tháng 1 2016

ccamr ơn rất rất nhìu 

10 tháng 3 2020

a,\(\left(3x-2\right)\left(x+6\right)\left(x^2+5\right)=0\)

Ta có: \(x^2+5\ge0\) (vô lí)

\(\Leftrightarrow\orbr{\begin{cases}3x-2=0\\x+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-6\end{cases}}\)

Vậy ....

c, \(4x^2\left(x-1\right)-x+1=0\)

\(\Leftrightarrow4x^3-4x^2-x+1=0\)

\(\Leftrightarrow4x^2\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(4x^2-1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}4x^2-1=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}4x^2=1\\x=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2=\frac{1}{4}\\x=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm\frac{1}{2}\\x=1\end{cases}}\)

Vậy ....

10 tháng 3 2020

\(\frac{x+2}{x+3}-\frac{x+1}{x-1}=\frac{4}{\left(x-1\right)\left(x+3\right)}\)

ĐKXĐ: \(x\ne1,x\ne-3\)

PT đã cho \(\Leftrightarrow\frac{\left(x+2\right).\left(x-1\right)-\left(x+1\right).\left(x+3\right)}{\left(x+3\right).\left(x-1\right)}=\frac{4}{\left(x-1\right)\left(x+3\right)}\)

\(\Leftrightarrow\frac{\left(x+2\right).\left(x-1\right)-\left(x+1\right).\left(x+3\right)}{\left(x+3\right).\left(x-1\right)}=\frac{4}{\left(x-1\right)\left(x+3\right)}\)

\(\Rightarrow x^2+x-2-x^2-4x-3=4\Leftrightarrow3x=-1\Leftrightarrow x=\frac{-1}{3}\)

21 tháng 1 2019

a/ \(\orbr{\begin{cases}x-2=0\\2x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{5}{2}\end{cases}}\)

21 tháng 1 2019

\(a,\left(x-2\right)\left(2x-5\right)=0.\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\2x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\2x=5\Leftrightarrow x=\frac{5}{2}\end{cases}}}\)

Vậy .... 

\(b,\left(0,2x-3\right)\left(0,5x-8\right)=0\left(\text{Mạo muội sửa đề nha 0,5 thành 0,5x}\right)\)

\(\Leftrightarrow\orbr{\begin{cases}0,2x-3=0\\0,5x-8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}0,2x=3\\0,5x=8\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=15\\x=16\end{cases}}\)

Vậy ... ( có j sai thì bỏ qua cho)

\(c,2x\left(x-6\right)+3\left(x-6\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\2x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=6\\2x=-3\Leftrightarrow x=-\frac{3}{2}\end{cases}}}\)

Vậy ... 

\(d,\left(x-1\right)\left(2x-4\right)\left(3x-9\right)=0\)

\(\Leftrightarrow2.3\left(x-1\right)\left(x-2\right)\left(x-3\right)=0\)

( ko có ngoặc vuông 3 cái nên mk trình bày kiểu này) 

+ TH1: 

x-1=0 <=> x= 1

+ TH2: 

x-2=0  <=> x=2 

+TH3: 

x-3 = 0 <=> x = 3 

1 tháng 3 2019

1) \(x^4-6x^3-x^2+54x-72=0\)

\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)

Tự làm nốt...

2) \(x^4-5x^2+4=0\)

\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)

Tự làm nốt...

1 tháng 3 2019

\(x^4-2x^3-6x^2+8x+8=0\)

\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)

...

\(2x^4-13x^3+20x^2-3x-2=0\)

\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)

1 tháng 8 2017

b)

\(\left(x+2\right)^4=y^3+x^4\)

\(\Leftrightarrow y^3=\left(x+2\right)^4-x^4=x^4+8x^3+24x^2+32x+16-x^4\)

\(\Leftrightarrow y^3=8x^3+24x^2+32x+16\)

+ Vì \(24x^2+32x+16=4\left(6x^2+8x+4\right)=4\left[2x^2+4\left(x+1\right)^2\right]>0\forall x\)

\(\Rightarrow y^3>8x^3=\left(2x\right)^3\)              (1)

+ Xét \(M=\left(2x+3\right)^3-y^3=8x^3+36x^2+54x+27-8x^3-24x^2-32x-16\)

\(\Rightarrow M=12x^2+22x+11=x^2+11\left(x+1\right)^2>0\forall x\)                 (2)

Từ (1) và (2) \(\Rightarrow\left(2x\right)^3< y^3< \left(2x+3\right)^3\)

\(\Rightarrow\orbr{\begin{cases}y=2x+1\\y=2x+2\end{cases}}\)

* Với \(y=2x+1\), thay vào biểu thức ta có :

\(\left(2x+1\right)^3=8x^3+24x^2+32x+16\)

\(\Leftrightarrow8x^3+12x^2+6x+1=8x^3+24x^2+32x+16\)

\(\Leftrightarrow12x^2+26x+15=0\)

\(\Leftrightarrow2x\left(6x+13\right)=-15\)

Vì x nguyên nên \(2x\left(6x+13\right)⋮2\), mà -15 ko chia hết cho 2 nên PT vô nghiệm 

* Với \(y=2x+2\), ta có :

\(\left(2x+2\right)^3=8x^3+24x^2+32x+16\)

\(\Leftrightarrow8x^3+24x^2+24x+8=8x^3+24x^2+32x+16\)

\(\Leftrightarrow8x+8=0\)

\(\Leftrightarrow x=-1\)

     Suy ra : \(y=2.\left(-1\right)+2=0\)

                     Vây PT có nghiệm \(\hept{\begin{cases}x=-1\\y=0\end{cases}}\)

1 tháng 8 2017

a)

\(x^2+xy+y^2=x^2y^2\)

\(\Leftrightarrow x^2+2xy+y^2=x^2y^2+xy\)

\(\Leftrightarrow\left(x+y\right)^2=xy\left(xy+1\right)\)

Suy ra : \(\orbr{\begin{cases}xy=0\\xy+1=0\end{cases}}\)

+ Với  \(xy=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\y=0\end{cases}}\)

Thay vào biểu thức  ta đc \(x=y=0\)

+ Với \(xy+1=0\Leftrightarrow xy=-1\)

Vì x, y nguyên nên \(\left(x;y\right)\in\left\{\left(1;-1\right);\left(-1;1\right)\right\}\)

Thay vao biểu thức ta thấy thỏa mãn !

                 Vậy \(\left(x;y\right)\in\left\{\left(0;0\right);\left(1;-1\right);\left(-1;1\right)\right\}\)

26 tháng 4 2019

cũng dễ thôi mà!!!

a, \(x^2-7x+6=x^2-x-6x+6\)

\(=x\left(x-1\right)-6\left(x-1\right)\)

\(=\left(x-6\right)\left(x-1\right)\)

b, \(|2x+1|-5x=3\)(*)

TH1: \(2x+1\ge0=>x\ge\frac{-1}{2}\)

PT(*) <=> \(2x+1-5x=3=>x=\frac{-2}{3}\)(thỏa mãn)

TH2: \(2x+1< 0=>x< \frac{-1}{2}\)

PT(*) <=> \(-2x-1-5x=3=>x=\frac{4}{7}\)(ko thỏa mãn)

Vậy phương trình có tập nghiệm S=\(\left\{\frac{-2}{3}\right\}\)