Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)3(x-1)(2x-1)-5(x+8)(x-1)=0
<=>(x-1)(6x-3-5x-40)=0
<=>(x-1)(x-43)=0
b)2x^3+3x^2-32x-48=0
<=>x^2(2x+3)-16(2x+3)=0
<=>(2x+3)(x-4)(x+4)=0
học tốt
\(a,\Leftrightarrow\left(x+5\right)\left(x-3\right)=0\Leftrightarrow x\in\left\{-5;3\right\}\)
\(b,\Leftrightarrow\left(3x-1\right)\left(3x+1\right)=\left(3x+1\right)\left(4x+1\right)\)
\(\Leftrightarrow\orbr{\begin{cases}3x+1=0\\3x-1=4x+1\end{cases}}\)
\(c,\Leftrightarrow\left(2x^3-32x\right)+\left(3x^2-48\right)=0\Leftrightarrow2x\left(x-4\right)\left(x+4\right)+3\left(x-4\right)\left(x+4\right)\)
\(\Leftrightarrow\left(2x+3\right)\left(x+4\right)\left(x-4\right)=0\Leftrightarrow......\)
\(\Leftrightarrow x^4-4x^3+12x^2-32x+32=\left(y-5\right)^2\)
\(\Leftrightarrow\left(x-2\right)^2\left(x^2+8\right)=\left(y-5\right)^2\)
- Với \(x=2\Rightarrow y=5\)
- Với \(x\ne2\Rightarrow x-2\) là ước của \(y-5\)
Đặt \(y-5=n\left(x-2\right)\)
\(\Rightarrow\left(x-2\right)^2\left(x^2+8\right)=n^2\left(x-2\right)^2\)
\(\Rightarrow x^2+8=n^2\)
\(\Rightarrow\left(n-x\right)\left(n+x\right)=8\)
\(\Rightarrow\left[{}\begin{matrix}x=1;n=-3\Rightarrow y=8\\x=-1;n=-3\Rightarrow y=14\\x=1;n=3\Rightarrow y=2\\x=-1;n=3\Rightarrow y=-4\end{matrix}\right.\)
\(2x^3+3x^2-32x-48=0\)
\(\Leftrightarrow2x^3-32x+3x^2-48=0\)
\(\Leftrightarrow2x\left(x^2-16\right)+3\left(x^2-16\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(x^2-16\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\pm4\\x=-\frac{3}{2}\end{matrix}\right.\)
b/ \(\Leftrightarrow10x^2-15x+4x-6=0\)
\(\Leftrightarrow5x\left(2x^2-3\right)+2\left(2x-3\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(5x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=-\frac{2}{5}\end{matrix}\right.\)
Lời giải:
a)
$10x^2-11x-6=0$
$\Leftrightarrow 10x^2-15x+4x-6=0$
$\Leftrightarrow 5x(2x-3)+2(2x-3)=0$
$\Leftrightarrow (2x-3)(5x+2)=0$
$\Rightarrow 2x-3=0$ hoặc $5x+2=0$
$\Rightarrow x=\frac{3}{2}$ hoặc $x=-\frac{2}{5}$
b)
$2x^3+3x^2-32x=48$
$\Leftrightarrow 2x^3+3x^2-32x-48=0$
$\Leftrightarrow 2x^3-8x^2+11x-44x+12x-48=0$
$\Leftrightarrow 2x^2(x-4)+11x(x-4)+12(x-4)=0$
$\Leftrightarrow (x-4)(2x^2+11x+12)=0$
$\Leftrightarrow (x-4)[2x(x+4)+3(x+4)]=0$
$\Leftrightarrow (x-4)(x+4)(2x+3)=0$
$\Rightarrow x-4=0; x+4=0$ hoặc $2x+3=0$
$\Rightarrow x=\pm 4$ hoặc $x=\frac{-3}{2}$
\(a,x-5\left(x-2\right)=6x\\ \Leftrightarrow x-5x+10-6x=0\\ \Leftrightarrow-10x+10=0\\ \Leftrightarrow x=1\\ b,2^3+3x^2-32x=48\\ \Leftrightarrow3x^2-32x+8=48\\ \Leftrightarrow3x^2-32x-40=0\)
Nghiệm xấu lắm bn
\(c,\left(3x+1\right)\left(x-3\right)^2=\left(3x+1\right)\left(2x-5\right)^2\\ \Leftrightarrow c,\left(3x+1\right)\left[\left(2x-5\right)^2-\left(x-3\right)^2\right]\\ \Leftrightarrow\left(3x+1\right)\left(2x-5-x+3\right)\left(2x-5+x-3\right)=0\\ \Leftrightarrow\left(3x+1\right)\left(x-2\right)\left(3x-8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=2\\x=\dfrac{8}{3}\end{matrix}\right.\)
\(d,9x^2-1=\left(3x+1\right)\left(4x+1\right)\\ \Leftrightarrow\left(3x+1\right)\left(4x+1\right)-\left(3x-1\right)\left(3x+1\right)=0\\ \Leftrightarrow\left(3x+1\right)\left(4x+1-3x+1\right)=0\\ \Leftrightarrow\left(3x+1\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=-2\end{matrix}\right.\)
\(b,2x^3+3x^2-32x-48=0\\ \Leftrightarrow\left(2x^3-8x^2\right)+\left(11x^2-44x\right)+\left(12x-48\right)=0\\ \Leftrightarrow2x^2\left(x-4\right)+11x\left(x-4\right)+12\left(x-4\right)=0\\ \Leftrightarrow\left(x-4\right)\left(2x^2+11x+12\right)=0\\ \Leftrightarrow\left(x-4\right)\left[\left(2x^2+8x\right)+\left(3x+12\right)\right]=0\\ \Leftrightarrow\left(x-4\right)\left[2x\left(x+4\right)+3\left(x+4\right)\right]=0\\ \Leftrightarrow\left(x-4\right)\left(2x+3\right)\left(x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{3}{2}\\x=-4\end{matrix}\right.\)
\(\left(x-3\right)y^2-x^2=48\)
\(\Leftrightarrow y^2=\frac{x^2+48}{x-3}\)
Vì \(y\) nguyên nên \(y^2\)nguyên. Vì vậy :
\(x^2+48⋮x-3\)
\(\Leftrightarrow x^2-3x+3x+48⋮x-3\)
\(\Leftrightarrow x\left(x-3\right)+3\left(x-3\right)+57⋮x-3\)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)+57⋮x+3\)
\(\Rightarrow57⋮x+3\)
\(\Rightarrow x+3\inƯ\left(57\right)=\left\{\pm1;\pm3;\pm19;\pm57\right\}\)
Tìm x rồi thay vào pt tìm y là xong
Lời giải:
a)
$3(x-1)(2x-1)=5(x+8)(x-1)$
$\Leftrightarrow (x-1)[3(2x-1)-5(x+8)]=0$
$\Leftrightarrow (x-1)(x-43)=0$
$\Rightarrow x-1=0$ hoặc $x-43=0$
$\Rightarrow x=1$ hoặc $x=43$
b)
$9x^2-1=(3x+1)(4x+1)$
$\Leftrightarrow (3x+1)(3x-1)=(3x+1)(4x+1)$
$\Leftrightarrow (3x+1)(4x+1)-(3x+1)(3x-1)=0$
$\Leftrightarrow (3x+1)[(4x+1)-(3x-1)]=0$
$\Leftrightarrow (3x+1)(x+2)=0$
$\Rightarrow 3x+1=0$ hoặc $x+2=0$
$\Rightarrow x=\frac{-1}{3}$ hoặc $x=-2$
c)
$(x+7)(3x-1)=49-x^2=(7-x)(7+x)$
$\Leftrightarrow (x+7)(3x-1)-(7-x)(7+x)=0$
$\Leftrightarrow (x+7)(3x-1-7+x)=0$
$\Leftrightarrow (x+7)(4x-8)=0$
$\Rightarrow x+7=0$ hoặc $4x-8=0$
$\Rightarrow x=-7$ hoặc $x=2$
d)
$x^3-5x^2+6x=0$
$\Leftrightarrow x(x^2-5x+6)=0$
$\Leftrightarrow x(x-2)(x-3)=0$
$\Rightarrow x=0; x-2=0$ hoặc $x-3=0$
$\Rightarrow x=0; x=2$ hoặc $x=3$
e)
$2x^3+3x^2-32x=48$
$\Leftrightarrow 2x^3+3x^2-32x-48=0$
$\Leftrightarrow 2x^2(x-4)+11x(x-4)+12(x-4)=0$
$\Leftrightarrow (x-4)(2x^2+11x+12)=0$
$\Leftrightarrow (x-4)[2x(x+4)+3(x+2)]=0$
$\Leftrightarrow (x-4)(x+4)(2x+3)=0$
$\Rightarrow x-4=0; x+4=0$ hoặc $2x+3=0$
$\Rightarrow x=4; x=-4$ hoặc $x=-\frac{3}{2}$
Lời giải:
a)
$3(x-1)(2x-1)=5(x+8)(x-1)$
$\Leftrightarrow (x-1)[3(2x-1)-5(x+8)]=0$
$\Leftrightarrow (x-1)(x-43)=0$
$\Rightarrow x-1=0$ hoặc $x-43=0$
$\Rightarrow x=1$ hoặc $x=43$
b)
$9x^2-1=(3x+1)(4x+1)$
$\Leftrightarrow (3x+1)(3x-1)=(3x+1)(4x+1)$
$\Leftrightarrow (3x+1)(4x+1)-(3x+1)(3x-1)=0$
$\Leftrightarrow (3x+1)[(4x+1)-(3x-1)]=0$
$\Leftrightarrow (3x+1)(x+2)=0$
$\Rightarrow 3x+1=0$ hoặc $x+2=0$
$\Rightarrow x=\frac{-1}{3}$ hoặc $x=-2$
c)
$(x+7)(3x-1)=49-x^2=(7-x)(7+x)$
$\Leftrightarrow (x+7)(3x-1)-(7-x)(7+x)=0$
$\Leftrightarrow (x+7)(3x-1-7+x)=0$
$\Leftrightarrow (x+7)(4x-8)=0$
$\Rightarrow x+7=0$ hoặc $4x-8=0$
$\Rightarrow x=-7$ hoặc $x=2$
d)
$x^3-5x^2+6x=0$
$\Leftrightarrow x(x^2-5x+6)=0$
$\Leftrightarrow x(x-2)(x-3)=0$
$\Rightarrow x=0; x-2=0$ hoặc $x-3=0$
$\Rightarrow x=0; x=2$ hoặc $x=3$
e)
$2x^3+3x^2-32x=48$
$\Leftrightarrow 2x^3+3x^2-32x-48=0$
$\Leftrightarrow 2x^2(x-4)+11x(x-4)+12(x-4)=0$
$\Leftrightarrow (x-4)(2x^2+11x+12)=0$
$\Leftrightarrow (x-4)[2x(x+4)+3(x+2)]=0$
$\Leftrightarrow (x-4)(x+4)(2x+3)=0$
$\Rightarrow x-4=0; x+4=0$ hoặc $2x+3=0$
$\Rightarrow x=4; x=-4$ hoặc $x=-\frac{3}{2}$
\(2x^3+3x^2-32x=48\)
\(2x^3+3x^2-32x-48=0\)
\(\left(2x^3+3x^2\right)-\left(32x+48\right)=0\)
\(x^2\left(2x+3\right)-16\left(2x+3\right)=0\)
\(\left(x^2-16\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-16=0\\2x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}\left(x+4\right)\left(x-4\right)=0\Leftrightarrow\orbr{\begin{cases}x=-4\\x=4\end{cases}}\\x=-\frac{3}{2}\end{cases}}}\)\(\left(x+4\right)\left(x-4\right)\left(2x+3\right)=0\)
\(\hept{\begin{cases}x+4=0\\x-4=0\\2x+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=-4\\x=4\\x=-\frac{3}{2}\end{cases}}}\)
\(2x^3+3x^2-32x=48\)
\(\Leftrightarrow2x^3+3x^2-32x-48=0\)
\(\Leftrightarrow\left(2x^3-32x\right)+\left(3x^2-48\right)=0\)
\(\Leftrightarrow2x\left(x^2-16\right)+3\left(x^2-16\right)=0\)
\(\Leftrightarrow\left(x^2-16\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+4\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0;x+4=0\\2x+3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\pm4\\x=\frac{-3}{2}\end{cases}}\)
Vậy tập nghiệm của pt là S={4;-4;-3/2}
_Học tốt_