Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số bị chia là a, số chia là b, gọi thương của 2 số là \frac{a}{b}
Theo đề bài, ta có:
a : b
(a+73) : (b+4) = dư 5
do đó
a + 73 x (b+4) + 5
a + 73 = x b + \frac{a}{b} x 4 + 5
a + 73 - 5 = a +
a + 68 = a +
a - a + 68 =
68 =
hay
Vậy thương của phép chia là 17
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
f) ĐKXĐ: \(x\ge-\frac{3}{2}\)
Khi đó VT > 0 nên \(VT>0\Rightarrow\left[{}\begin{matrix}x\ge2\\x\le-3\left(L\right)\end{matrix}\right.\)
Lũy thừa 6 cả 2 vế lên PT tương đương:
\( \left( x-3 \right) \left( {x}^{11}+9\,{x}^{10}+6\,{x}^{9}-142\,{x}^{ 8}-231\,{x}^{7}+1113\,{x}^{6}+2080\,{x}^{5}-4604\,{x}^{4}-6908\,{x}^{3 }+13222\,{x}^{2}+10983\,x-15327 \right) =0\)
Cái ngoặc to vô nghiệm vì nó tương đương:
\(\left( x-2 \right) ^{11}+31\, \left( x-2 \right) ^{10}+406\, \left( x -2 \right) ^{9}+2906\, \left( x-2 \right) ^{8}+12281\, \left( x-2 \right) ^{7}+31031\, \left( x-2 \right) ^{6}+46656\, \left( x-2 \right) ^{5}+46648\, \left( x-2 \right) ^{4}+46452\, \left( x-2 \right) ^{3}+44590\, \left( x-2 \right) ^{2}+36015\,x-55223 = 0\)(vô nghiệm với mọi \(x\ge2\))
Vậy x = 3.
PS: Nghiệm đẹp thế này chắc có cách AM-Gm độc đáo nhưng mình chưa nghĩ ra
@Akai Haruma, @Nguyễn Việt Lâm
giúp em vs ạ! Cần gấp ạ
em cảm ơn nhiều!
a/
\(\Leftrightarrow2\left(x^2-x+1\right)-\left(x^2+x+1\right)=-\frac{\sqrt{3}}{3}\sqrt{\left(x^2-x+1\right)\left(x^2+x+1\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a>0\\\sqrt{x^2+x+1}=b>0\end{matrix}\right.\)
\(\Leftrightarrow6a^2+\sqrt{3}ab-3b^2=0\)
\(\Leftrightarrow\left(3a-\sqrt{3}b\right)\left(2a+\sqrt{3}b\right)=0\)
\(\Leftrightarrow3a-\sqrt{3}b=0\Rightarrow b=\sqrt{3}a\)
\(\Leftrightarrow\sqrt{x^2+x+1}=\sqrt{3}\sqrt{x^2-x+1}\)
\(\Leftrightarrow x^2+x+1=3x^2-3x+3\)
b/ ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}x+3=a\\\sqrt{\left(4-x\right)\left(12+x\right)}=b\end{matrix}\right.\)
\(\Rightarrow a^2+b^2=x^2+6x+9+48-8x-x^2=57-2x=2\left(28-x\right)+1\)
\(\Rightarrow28-x=\frac{a^2+b^2-1}{2}\)
Phương trình trở thành:
\(ab=\frac{a^2+b^2-1}{2}\Leftrightarrow\left(a-b\right)^2=1\Leftrightarrow\left[{}\begin{matrix}a+1=b\\a-1=b\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=\sqrt{\left(4-x\right)\left(12+x\right)}\\x+2=\sqrt{\left(4-x\right)\left(12+x\right)}\end{matrix}\right.\) \(\Leftrightarrow...\)
c/ ĐKXĐ: ...
\(\sqrt{x\left(x^2-1\right)}=2\left(x^2-1\right)-x\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\ge0\\\sqrt{x^2-1}=b\ge0\end{matrix}\right.\)
\(ab=2a^2-b^2\Leftrightarrow2a^2-ab-b^2=0\)
\(\Leftrightarrow\left(a-b\right)\left(2a+b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a-b=0\\2a+b=0\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow a=b\Leftrightarrow\sqrt{x}=\sqrt{x^2-1}\)
\(\Leftrightarrow x^2-x-1=0\)
d/ Là \(2x^2+5\) hay \(2x+5\) bạn?
đặt \(\sqrt{2x-x^2}=a\)
phương trình trở thành:
\(\sqrt{1+a}+\sqrt{1-a}=2\left(1-a^2\right)^2\left(1-2a^2\right)\)
đến đây thì khai triển đi
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
Khó nhờ!