Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)\(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}=3\left(x+y\right)\)
\(\Rightarrow\left(\sqrt{5x^2+2xy+2y^2}+\sqrt{2x^2+2xy+5y^2}\right)^2=\left(3\left(x+y\right)\right)^2\)
\(\Leftrightarrow\sqrt{\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)}=x^2+7xy+y^2\)
\(\Rightarrow\left(5x^2+2xy+2y^2\right)\left(2x^2+2xy+5y^2\right)=\left(x^2+7xy+y^2\right)^2\)
\(\Leftrightarrow9\left(x-y\right)^2\left(x+y\right)^2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=-y\end{matrix}\right.\)
\(\rightarrow\left(x;y\right)\in\left\{\left(0;0\right),\left(1;1\right)\right\}\)
1,\(hpt\Leftrightarrow\left\{{}\begin{matrix}\left(x-2y\right)\left(x+y\right)=0\\\sqrt{2x}+\sqrt{y+1}=2\left(\circledast\right)\end{matrix}\right.\)
\(\left(x-2y\right)\left(x+y\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2y\\x=-y\end{matrix}\right.\)
Th1:\(x=2y\) Thay vào \(\left(\circledast\right)\) , ta có :
\(\sqrt{4y}+\sqrt{y+1}=2\)
\(\Leftrightarrow2-2\sqrt{y}=\sqrt{y+1}\)\(\Leftrightarrow3y-8\sqrt{y}+3=0\)
Giải pt thu được (x;y)
Th2:x=-y thay vào \(\left(\circledast\right)\), ta có
\(\sqrt{-2x}+\sqrt{y+1}=2\)
Xét đk ta thấy:\(y\le0;y\ge-1\)(vô nghiệm)
Vậy ....
2,\(hpt\Leftrightarrow\left\{{}\begin{matrix}\left(x-y-1\right)\left(x+y^2\right)=0\\\sqrt{x}+\sqrt{y+1}=2\end{matrix}\right.\)
\(\left(x-y-1\right)\left(x+y^2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=y+1\\x=-y^2\end{matrix}\right.\)
Th1:\(x=y+1\)
Thay vào ta có:\(\sqrt{x}+\sqrt{x}=2\Leftrightarrow x=1\)\(\Leftrightarrow y=0\)
Th2:\(x=-y^2\)thay vào ta có:
\(\sqrt{-y^2}+\sqrt{y+1}=2\)
vì \(-y^2\le0\) mà nhận thấy y=0 ko là nghiệm của pt
\(\Rightarrow\)Pt vô nghiệm
a/ \(\Leftrightarrow\left(x+3\right)\left(x^4-3x^3-6x^2+18x-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x^4-3x^3-6x^2+18x-9=0\left(1\right)\end{matrix}\right.\)
Xét (1):
\(\Leftrightarrow x^4-3x^3+3x^2-9x^2+18x-9=0\)
\(\Leftrightarrow x^4-3x^2\left(x-1\right)-9\left(x-1\right)^2=0\)
Nhận thấy \(x=1\) không phải nghiệm, chia 2 vế cho \(\left(x-1\right)^2\)
\(\left(\frac{x^2}{x-1}\right)^2-\frac{3x^2}{x-1}-9=0\)
Đặt \(\frac{x^2}{x-1}=a\Rightarrow a^2-3a-9=0\Rightarrow...\)
b/ ĐKXĐ: ...
\(\Leftrightarrow11-\frac{25x^2}{\left(x+5\right)^2}=x^2\)
\(\Leftrightarrow x^2+\frac{25x^2}{\left(x+5\right)^2}-2.x.\frac{5x}{x+5}+\frac{10x^2}{x+5}-11=0\)
\(\Leftrightarrow\left(x-\frac{5x}{x+5}\right)^2+\frac{10x^2}{x+5}-11=0\)
\(\Leftrightarrow\left(\frac{x^2}{x+5}\right)^2+\frac{10x^2}{x+5}-11=0\)
Đặt \(\frac{x^2}{x+5}=a\Rightarrow a^2+10a-11=0\)
c/ Nhận thấy \(x=y=0\) là nghiệm
Với \(x;y\ne0\), đặt \(y=kx\) ta được:
\(\left\{{}\begin{matrix}x^3-k^2x^3+2000kx=0\\k^3x^3-kx^3-500x=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-k^2x^2+2000k=0\\k^3x^2-kx^2-500=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2\left(k^2-1\right)=2000k\\x^2\left(k^3-k\right)=500\end{matrix}\right.\)
Nhận thấy \(k=\left\{-1;0;1\right\}\) không thỏa mãn
\(\Rightarrow\left\{{}\begin{matrix}x^2=\frac{2000k}{k^2-1}\\x^2=\frac{500}{k^3-k}\end{matrix}\right.\) \(\Rightarrow\frac{2000k}{k^2-1}=\frac{500}{k\left(k^2-1\right)}\)
\(\Rightarrow4k^2=1\Rightarrow\left[{}\begin{matrix}k=\frac{1}{2}\\k=-\frac{1}{2}\end{matrix}\right.\)
- Với \(k=\frac{1}{2}\Rightarrow x=2y\) thay vào pt dưới: \(y^3-4y^3-1000y=0\)
- Với \(k=-\frac{1}{2}\Rightarrow x=-2y\Rightarrow y^3-4y^3+1000y=0\)