K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2023

Phân tích đa thức:

x^4 + 2x^3 - x^2 - 2x + 1

= (x^4 + 2x^3) - (x^2 + 2x) + 1

= x^3(x + 2) - x(x + 2) + 1

= (x^3 - x)(x + 2) + 1

= x(x^2 - 1)(x + 2) + 1

= x(x - 1)(x + 1)(x + 2) + 1

Vậy phương trình đã cho có các nghiệm là x = -2, x = -1, x = 0 và x = 1.

17 tháng 1 2018

Thực ra 2 câu đầu rất dễ nha bạn ^^!

1) x+ 2x3 + x2 + 2x + 1 =0 <=> x3(x+2)+x(x+2)+1 = 0

<=> (x3+x)(x+2) + 1=0

1>0

=> (x3+x)(x+2) + 1=0 <=> (x3+x)(x+2) = 0

<=>\(\orbr{\begin{cases}^{x^3+x=0}\\x+2=0\end{cases}}\)<=>\(\orbr{\begin{cases}^{x\left(x^2+1\right)=0}\\x=-2\end{cases}}\) <=>\(\orbr{\begin{cases}^{x=0}\\x=-2\end{cases}}\)

b)

x3+1=\(2\sqrt[3]{2x-1}\)

<=> x^3 - 1 = 2(\(\sqrt[3]{2x-1}\) -1)

<=> (x-1)(x2+x+1) = \(\frac{4\left(x-1\right)}{\sqrt[3]{\left(2x-1\right)^2}+\sqrt[3]{2x-1}+1}\)

<=> (x-1)[(x2+x+1) - \(\frac{1}{\sqrt[3]{\left(2x-1\right)^2}+\sqrt[3]{2x-1}+1}\) ] =0

<=> x=1

17 tháng 1 2018

xin lỗi bạn mình ghi nhầm câu 1, mai mình sẽ sửa lại

15 tháng 1 2017

a)\(2x^3=x^2+2x-1\Leftrightarrow2x^3-x^2-2x+1=0\Leftrightarrow x^2\left(2x-1\right)-\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x^2-1\right)=0\Leftrightarrow\left(2x-1\right)\left(x-1\right)\left(x+1\right)=0\)

<=> 2x-1=0 hoặc x-1=0 hoặc x+1=0 <=> x=1/2 hoặc x=1 hoặc x=-1

b)\(x^2-4+\left(x-2\right)\left(3-2x\right)=0\Leftrightarrow\left(x-2\right)\left(x+2\right)+\left(x-2\right)\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2+3-2x\right)=0\Leftrightarrow\left(x-2\right)\left(5-x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\5-x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=5\end{cases}}\)

15 tháng 1 2017

a) 1

b) 2

5 tháng 7 2016

ko ai giải đc à, giúp mk đi mà mau lên đang cần gấp, please

5 tháng 7 2016

RẤT nhieu bn giai dc vi các pt này dễ nhung k ai giai vi nó dài ,làm mệt mà kè nhờ vả k biet ơn, k coi trọng chât xám 

toàn là h tảo lao nên ng tài k dc trọng dụng , kẻ bât tai thi k giai dc, bởi z ng tài chỉ xem bài nào khó, k dài thi giai, dc kdc h cũng k cần

23 tháng 9 2016

khó wa!

3 tháng 1 2016

3 - 2x = 3(x+1)-x-2

3-2x-3(x+1)+x+2=0

3-2x-3x-3+x+2=0

-4x+2=0

-4x=-2

x=\(\frac{-2}{-4}\)

x=\(\frac{1}{2}\)

23 tháng 2 2021

Mình khuyên bạn thế này : 

Bạn nên tách những câu hỏi ra 

Như vậy các bạn sẽ dễ giúp

Và cũng có nhiều bạn giúp hơn !

23 tháng 2 2021

Bài 1.

a) ( x - 3 )( x + 7 ) = 0

<=> x - 3 = 0 hoặc x + 7 = 0

<=> x = 3 hoặc x = -7

Vậy S = { 3 ; -7 }

b) ( x - 2 )2 + ( x - 2 )( x - 3 ) = 0

<=> ( x - 2 )( x - 2 + x - 3 ) = 0

<=> ( x - 2 )( 2x - 5 ) = 0

<=> x - 2 = 0 hoặc 2x - 5 = 0

<=> x = 2 hoặc x = 5/2

Vậy S = { 2 ; 5/2 }

c) x2 - 5x + 6 = 0

<=> x2 - 2x - 3x + 6 = 0

<=> x( x - 2 ) - 3( x - 2 ) = 0

<=> ( x - 2 )( x - 3 ) = 0

<=> x - 2 = 0 hoặc x - 3 = 0

<=> x = 2 hoặc x = 3

20 tháng 4 2018

a/ Đặt \(\hept{\begin{cases}\frac{x+1}{x-2}=a\\\frac{x+1}{x-4}=b\end{cases}}\) thì có

\(a^2+b-\frac{12b^2}{a^2}=0\)

\(\Leftrightarrow\left(a^2-3b\right)\left(a^2+4b\right)=0\)

b/ \(2x^2+3xy-2y^2=7\)

\(\Leftrightarrow\left(2x-y\right)\left(x+2y\right)=7\)

24 tháng 9 2016

Dùng phương pháp !!!!!!!Hệ Số Bất Định!!!!!!

31 tháng 12 2019

a) Ta có: x4 - x3 + 2x2 - x + 1 = 0

=> (x4 + 2x2 + 1) - x(x2 + 1) = 0

=> (x2 + 1)2 - x(x2 + 1) = 0

=> (x2 + 1)(x2 - x + 1) = 0

=> (x2 + 1)[(x2 - x + 1/4) + 3/4] = 0

=> (x2+  1 )[(x - 1/2)2 + 3/4] = 0

=> pt vô nghiệm (vì x2 + 1 > 0; (x - 1/2)2 + 3/4 > 0)

b) Ta có: x3 + 2x2 - 7x + 4 = 0

=> (x3 - x) + (2x2 - 6x + 4) = 0

=> x(x2 - 1) + 2(x2 - 3x + 2) = 0

=> x(x - 1)(x + 1) + 2(x2 - 2x - x + 2) = 0

=> x(x - 1)(x + 1) + 2(x - 2)(x - 1) = 0

=> (x - 1)(x2 + x + 2x - 4) = 0

=> (x - 1)(x2 + 3x - 4) = 0

=> (x - 1)(x2  + 4x - x - 4) = 0

=> (x - 1)(x + 4)(x - 1) = 0

=> (x - 1)2(x + 4) = 0

=> \(\orbr{\begin{cases}x-1=0\\x+4=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=1\\x=-4\end{cases}}\)

1 tháng 1 2020

a) \(x^4-x^3+2x^2-x+1=0\)

\(\Leftrightarrow\left(x^4+2x^2+1\right)-x\left(x^2+1\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)^2-x\left(x^2+1\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(x^2+1-x\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)\left[\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}\right]=0\)

\(\Leftrightarrow\left(x^2+1\right)\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]=0\)

Ta có: \(\hept{\begin{cases}x^2+1>0\forall x\\\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\end{cases}}\)

\(\Rightarrow\)Phương trình vô nghiệm

Vậy không có giá trị x thỏa mãn đề bài
 

b) \(x^3+2x^2-7x+4=0\)

\(\Leftrightarrow\left(x^3-x\right)+\left(2x^2-6x+4\right)=0\)

\(\Leftrightarrow x\left(x^2-1\right)+2\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)+2\left(x^2-x-2x+2\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)+2\left[x\left(x-1\right)-2\left(x-1\right)\right]=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)+2\left(x-2\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x\left(x+1\right)+2\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2+x+2x-4\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2+3x-4\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2+4x-x-4\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left[x\left(x+4\right)-\left(x+4\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=0\\x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+4=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x=-4\end{cases}}}\)

Vậy x=1; x=-4