K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 12 2018

Lời giải:
ĐK: \(x\geq \frac{-1}{3}\)

PT \(\Leftrightarrow (x+1)(x+3)=(x+1)\sqrt{8x+5}+\sqrt{6x+2}\)

\(\Leftrightarrow (x+1)(x+2)+(x+1)-(x+1)\sqrt{8x+5}-\sqrt{6x+2}=0\)

\(\Leftrightarrow (x+1)(x+2-\sqrt{8x+5})+(x+1)-\sqrt{6x+2}=0\)

\(\Leftrightarrow (x+1).\frac{x^2-4x-1}{x+2+\sqrt{8x+5}}+\frac{x^2-4x-1}{x+1+\sqrt{6x+2}}=0\)

\(\Leftrightarrow (x^2-4x-1)\left(\frac{x+1}{x+2+\sqrt{8x+5}}+\frac{1}{x+1+\sqrt{6x+2}}\right)=0\)

Với mọi $x\geq \frac{-1}{3}$ ta thấy biểu thức trong " ngoặc lớn" luôn lớn hơn $0$

Do đó: \(x^2-4x-1=0\Rightarrow x=2\pm \sqrt{5}\) (đều thỏa mãn)

Vậy..............

NV
16 tháng 2 2020

a/ ĐKXĐ: ...

\(\Leftrightarrow\left(x^2-6x\right)\left(\sqrt{17-x^2}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-6x=0\\\sqrt{17-x^2}=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\left(x-6\right)=0\\x^2=16\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\left(l\right)\\x=4\\x=-4\end{matrix}\right.\)

b/ĐKXĐ: \(x\ge-3\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+5x+4=0\\\sqrt{x+3}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-4\left(l\right)\\x=-3\end{matrix}\right.\)

NV
16 tháng 2 2020

c/ ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ge1\\x\le1\end{matrix}\right.\) \(\Rightarrow x=1\)

Thay \(x=1\) vào pt thấy ko thỏa mãn

Vậy pt vô nghiệm

d/ ĐKXĐ: \(x\ge2\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x+3=0\\\sqrt{x-2}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\left(l\right)\\x=2\end{matrix}\right.\)

3 tháng 2 2019

đa phần mình sử dụng phương pháp liên hợp nha bạn

\(\sqrt{a}-\sqrt{b}=\dfrac{a-b}{\sqrt{a}+\sqrt{b}}\)

b. điều kiện \(\dfrac{1}{4}\le x\le\dfrac{3}{8}\), pt:

\(\Leftrightarrow\sqrt{3-8x}-\sqrt{4x-1}=6x-2\\ \Leftrightarrow\dfrac{3-8x-4x+1}{\sqrt{3-8x}+\sqrt{4x-1}}=2\left(3x-1\right)\\ \Leftrightarrow\dfrac{-4\left(3x-1\right)}{\sqrt{3-8x}+\sqrt{4x-1}}=2\left(3x-1\right)\\ \Leftrightarrow2\left(3x-1\right)+\dfrac{4\left(3x-1\right)}{\sqrt{3-8x}+\sqrt{4x-1}}=0\\ \Leftrightarrow2\left(3x-1\right)\left(1+\dfrac{2}{\sqrt{3-8x}+\sqrt{4x-1}}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\left(n\right)\\1+\dfrac{2}{\sqrt{3-8x}+\sqrt{4x-1}}=0\left(vn\right)\end{matrix}\right.\)

d. điều kiện: \(x\le-4\cup x\ge0\), pt:

\(\Leftrightarrow1-\sqrt{x^2-3x+3}=\sqrt{2x^2+x+2}-\sqrt{x^2+4x}\\ \Leftrightarrow\dfrac{1-x^2+3x-3}{1+\sqrt{x^2-3x+3}}=\dfrac{2x^2+x+2-x^2-4x}{\sqrt{2x^2+x+2}+\sqrt{x^2+4x}}\\ \Leftrightarrow\dfrac{-\left(x-1\right)\left(x-2\right)}{1+\sqrt{x^2-3x+3}}=\dfrac{\left(x-1\right)\left(x-2\right)}{\sqrt{2x^2+x+2}+\sqrt{x^2+4x}}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(n\right)\\x=1\left(n\right)\\\dfrac{-1}{1+\sqrt{x^2-3x+3}}=\dfrac{1}{\sqrt{2x^2+x+2}+\sqrt{x^2+4x}}\left(vn\right)\end{matrix}\right.\)

e. điều kiện:x thuộc R

\(\Leftrightarrow\sqrt{x^2+15}-4=3x-3+\sqrt{x^2+8}-3\\ \Leftrightarrow\dfrac{x^2+15-16}{\sqrt{x^2+15}+4}=3\left(x-1\right)+\dfrac{x^2+8-9}{\sqrt{x^2+8}+3}\\ \Leftrightarrow\dfrac{\left(x-1\right)\left(x+1\right)}{\sqrt{x^2+15}+4}-3\left(x-1\right)-\dfrac{\left(x-1\right)\left(x+1\right)}{\sqrt{x^2+8}+3}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\dfrac{\left(x+1\right)}{\sqrt{x^2+15}+4}-3-\dfrac{\left(x+1\right)}{\sqrt{x^2+8}+3}=0\left(1\right)\end{matrix}\right.\)

(1) mình không biết có vô nghiệm không nữa và cũng thua luôn

f. điều kiện: \(x\ge-2\)

bài này giải cách hơi khác một chút

đặt \(a=\sqrt{x+5}\left(\ge0\right)\\ b=\sqrt{x+2}\left(\ge0\right)\)

pt:

\(\Leftrightarrow\left(\sqrt{x+5}-\sqrt{x+2}\right)\left[\left(1+\sqrt{\left(x+5\right)\left(x+2\right)}\right)\right]\\ \Rightarrow\left(a-b\right)\left(1+ab\right)=3\left(1\right)\)

\(a^2-b^2=x+5-x-2=3\\ \Rightarrow\left(a-b\right)\left(a+b\right)=3\left(2\right)\)

=> (1) = (2)

\(\Leftrightarrow\left(a-b\right)\left(1+ab\right)=\left(a-b\right)\left(a+b\right)\\ \Leftrightarrow\left(a-b\right)\left(1+ab-a-b\right)=0\\ \Leftrightarrow\left(a-b\right)\left(a-1\right)\left(b-1\right)=0\)

TH1: a=b \(\Leftrightarrow\sqrt{x+5}=\sqrt{x+2}\Leftrightarrow x+5=x+2\left(vn\right)\)

TH2: a=1\(\Leftrightarrow\sqrt{x+5}=1\Leftrightarrow x=-4\left(l\right)\)

TH3: b=1\(\Leftrightarrow\sqrt{x+2}=1\Leftrightarrow x=-1\left(n\right)\)

g. điều kiện: \(x\le-\sqrt{2}\cup x\ge\dfrac{7+\sqrt{37}}{2}\)

pt:

\(\dfrac{3x^2-7x+3-3x^2+5x+1}{\sqrt{3x^2-7x+2}+\sqrt{x^2-3x-4}}=\dfrac{x^2-2-x^2+3x-4}{\sqrt{3x^2-5x-1}+\sqrt{x^2-2}}\\ \Leftrightarrow\dfrac{-2\left(x-2\right)}{\sqrt{3x^2-7x+2}+\sqrt{x^2-3x-4}}=\dfrac{3\left(x-2\right)}{\sqrt{3x^2-5x-1}+\sqrt{x^2-2}}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\left(n\right)\\\dfrac{-2}{\sqrt{3x^2-7x+2}+\sqrt{x^2-3x-4}}=\dfrac{3}{\sqrt{3x^2-5x-1}+\sqrt{x^2-2}}\left(vn\right)\end{matrix}\right.\)h. điều kiện \(x\le-2-\sqrt{7}\cup x\ge-2+\sqrt{7}\)

\(\sqrt{2x^2+x-1}-\sqrt{x^2+4x-3}=\sqrt{2x^2+4x-3}-\sqrt{3x^2+x-1}\\ \Leftrightarrow\dfrac{2x^2+x-1-x^2-4x+3}{\sqrt{2x^2+x-1}+\sqrt{x^2+4x-3}}=\dfrac{2x^2+4x-3-3x^2-x+1}{\sqrt{2x^2+4x-3}+\sqrt{3x^2+x-1}}\\ \Leftrightarrow\dfrac{x^2-3x+2}{\sqrt{2x^2+x-1}+\sqrt{x^2+4x-3}}=\dfrac{-\left(x^2-3x+2\right)}{\sqrt{2x^2+4x-3}+\sqrt{3x^2+x-1}}\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-3x+2=0\Leftrightarrow x=1\left(n\right),x=2\left(n\right)\\\dfrac{1}{\sqrt{2x^2+x-1}+\sqrt{x^2+4x-3}}=\dfrac{-1}{\sqrt{2x^2+4x-3}+\sqrt{3x^2+x-1}}\left(vn\right)\end{matrix}\right.\)

(nhớ tích cho mình nha, mấy bài kia mình ko biết làm huhu)

10 tháng 2 2019

thank bn

2 tháng 2 2020

\(ĐKXĐ:\hept{\begin{cases}x^2-8x+15\ge0\\x^2+2x-15\ge0\\4x^2-18x+18\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge5\\x\le-5\\x=3\end{cases}}\)

Với x = 8 thì (*) thỏa mãn \(\Rightarrow x=3\)là 1 nghiệm của bất phương trình.

\(\left(^∗\right)\Leftrightarrow\sqrt{\left(x-5\right)\left(x-3\right)}+\sqrt{\left(x+5\right)\left(x-3\right)}\le\sqrt{\left(x-3\right)\left(4x-6\right)}\)(1)

Với \(x\ge5\Rightarrow x-3\ge2>0\)hay \(x-3>0\)thì

\(\left(1\right)\Leftrightarrow\sqrt{x-5}+\sqrt{x+5}\le\sqrt{4x-6}\)\(\Leftrightarrow2x+2\sqrt{x^2-25}\le4x-6\)

\(\Leftrightarrow\sqrt{x^2-25}\le x-3\Leftrightarrow x^2-25=x^2-6x+9\Leftrightarrow x\le\frac{17}{3}\)

\(\Rightarrow5\le x\le\frac{17}{3}\)

Với \(x\le-5\Leftrightarrow-x\ge5\Leftrightarrow3-x\ge8>0\)hay \(x\le-5\Leftrightarrow-x\ge5\Leftrightarrow3-x>0\)thì

\(\left(1\right)\Leftrightarrow\sqrt{\left(5-x\right)\left(3-x\right)}+\sqrt{\left(-5-x\right)\left(3-x\right)}\)

\(\le\sqrt{\left(3-x\right)\left(4-6x\right)}\)

\(\Leftrightarrow\sqrt{5-x}+\sqrt{-x-5}\le\sqrt{6-4x}\)

\(\Leftrightarrow-2x+2\sqrt{\left(5-x\right)\left(-x-5\right)}\le6-4x\)

\(\Leftrightarrow\sqrt{x^2-25}\le3-x\Leftrightarrow x^2-25\le x^2-6x+9\)

\(\Leftrightarrow x\le\frac{17}{3}\Rightarrow x\le-5\)

Từ đó suy ra tập nghiệm của bpt là \(x\in(-\infty;-5]\mu\left\{3\right\}\mu\left[5;\frac{17}{3}\right]\)

7 tháng 4 2017

lời giải

a)

\(\left(x+1\right)\left(2x-1\right)+x\le2x^2+3\)

\(\Leftrightarrow2x^2+x-1+x\le2x^2+3\)

\(\Leftrightarrow2x\le4\Rightarrow x\le2\)

\(\)b) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)-x>x^3+6x^2-5\)

\(\left(x^2+3x+2\right)\left(x+3\right)-x>x^3+6x^2-5\)

\(x^3+3x^2+3x^2+9x+2x+6-x>x^3+6x^2-5\)

\(10x+6>-5\Rightarrow x>-\dfrac{11}{10}\)

8 tháng 5 2017

c)Đkxđ: x0
x+x>(2x+3)(x1)
x+x>2x+x3
x3>0
x>3. (tmđk).
 

12 tháng 11 2019

a) ĐK: \(\orbr{\begin{cases}x\ge3+\sqrt{3}\\x\le3-\sqrt{3}\end{cases}}\)

pt \(\Leftrightarrow\)\(x^2-6x+9-4\sqrt{x^2-6x+6}=0\)

\(\Leftrightarrow\)\(a^2-4a+3=0\)\(\left(a=\sqrt{x^2-6x+6}\ge0\right)\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}\sqrt{x^2-6x+6}=1\\\sqrt{x^2-6x+6}=3\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1hoacx=5\\x=3\pm2\sqrt{3}\end{cases}}\left(nhan\right)\)

b) ĐK.. 

pt \(\Leftrightarrow\)\(\frac{\left(x-2\right)^2}{\left(x-1\right)^2}+2\left|\frac{x-2}{x-1}\right|-3=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}\left|\frac{x-2}{x-1}\right|=-3\left(loai\right)\\\left|\frac{x-2}{x-1}\right|=1\end{cases}}\Leftrightarrow x=\frac{3}{2}\left(nhan\right)\)