Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với mọi x ta có \(x^2+3x+3=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}>0;2x^2+3x+2=2\left(x+\frac{3}{4}\right)^2+\frac{7}{8}>0\)
Áp dụng bất đẳng thức cosi cho 3 số
\(\sqrt[3]{x^2+3x+3}=\sqrt[3]{\left(x^2+3x+3\right)\cdot1\cdot1}\le\frac{x^2+3x+3+1+1}{3}=\frac{x^2+3x+5}{3}\)
\(\sqrt[3]{2x^2+3x+2}=\sqrt[3]{\left(2x^2+3x+2\right)\cdot1\cdot1}\le\frac{2x^2+3x+4}{3}\)
\(\Rightarrow6x^2+12x+8\le\frac{x^2+3x+5}{3}+\frac{2x^2+3x+4}{3}=x^2+2x+3\)
\(\Rightarrow5x^2+10x+5\le0\Rightarrow5\left(x+1\right)^2\le0\Rightarrow x=-1\)
vậy phương trình có nghiệm x=-1
Bài này sử dụng cách đặt ẩn phụ sẽ đơn giản và nhanh hơn
\(\sqrt{x^2-6x+10}=\sqrt{\left(x-3\right)^2+1}\ge\sqrt{1}=1\)
\(\sqrt{2x^2-12x+22}=\sqrt{2\left(x^2-6x+11\right)}=\sqrt{2\left(x-3\right)^2+4}\ge\sqrt{4}=2\)
Từ đó suy ra:\(\sqrt{x^2-6x+10}+\sqrt{2x^2-12x+22}\ge1+2=3\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x=3\)
Thử lại với x=3 thì pt thỏa mãn
Vậy pt có nghiệm duy nhất là x=3
b) ĐK: \(1-\sqrt{3}< x< 1+\sqrt{3}\).Đặt:
\(\sqrt{2x^2-4x+3}-1+\sqrt{3x^2-6x+7}-2+x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2\left[\frac{2}{\sqrt{2x^2-4x+3}+1}+\frac{3}{\sqrt{3x^2-6x+7}+2}+1\right]=0\)
Cái ngoặc to vô nghiệm.Do đó x = 1(TM)
Vậy...
P.s: Nãy giờ em đi đánh giá lung tùng nào là "truy ngược dấu liên hợp" mất cả tiếng đồng hồ không ra và cảm thấy uổng phí quá:( Bài này nếu sai thì em chịu luôn
\(2x-x^2+\sqrt{6x^2-12x+7}=0\Leftrightarrow\sqrt{6\left(x^2-2x\right)+7}=x^2-2x\)(1)
Đặt \(t=x^2-2x\)(t\(\ge0\))
Vậy (1)\(\Leftrightarrow\sqrt{6t+7}=t\Leftrightarrow6t+7=t^2\Leftrightarrow t^2-6t-7=0\Leftrightarrow t^2+t-7t-7=0\Leftrightarrow t\left(t+1\right)-7\left(t+1\right)=0\Leftrightarrow\left(t+1\right)\left(t-7\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}t+1=0\\t-7=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}t=-1\left(ktm\right)\\t=7\left(tm\right)\end{matrix}\right.\)\(\Leftrightarrow t=7\Leftrightarrow x^2-2x=7\Leftrightarrow x^2-2x-7=0\Leftrightarrow x^2-2x+1=8\Leftrightarrow\left(x-1\right)^2=8\Leftrightarrow x-1=\pm2\sqrt{2}\Leftrightarrow x=1\pm2\sqrt{2}\)Vậy S={\(1\pm2\sqrt{2}\)}
\(\Leftrightarrow\sqrt{\left(x-3\right)^2+1}=1-2\left(x-3\right)^2\)
Do \(\left(x-3\right)^2\ge0\Rightarrow\left\{{}\begin{matrix}VT=\sqrt{\left(x-3\right)^2+1}\ge1\\VP=1-\left(x-3\right)^2\le1\end{matrix}\right.\)
\(\Rightarrow VT\ge VP\)
Dấu "=" xảy ra khi và chỉ khi \(\left(x-3\right)^2=0\Leftrightarrow x=3\)