Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x^2-6x+10}=\sqrt{\left(x-3\right)^2+1}\ge\sqrt{1}=1\)
\(\sqrt{2x^2-12x+22}=\sqrt{2\left(x^2-6x+11\right)}=\sqrt{2\left(x-3\right)^2+4}\ge\sqrt{4}=2\)
Từ đó suy ra:\(\sqrt{x^2-6x+10}+\sqrt{2x^2-12x+22}\ge1+2=3\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x=3\)
Thử lại với x=3 thì pt thỏa mãn
Vậy pt có nghiệm duy nhất là x=3
\(\Leftrightarrow\sqrt{\left(x-3\right)^2+1}=1-2\left(x-3\right)^2\)
Do \(\left(x-3\right)^2\ge0\Rightarrow\left\{{}\begin{matrix}VT=\sqrt{\left(x-3\right)^2+1}\ge1\\VP=1-\left(x-3\right)^2\le1\end{matrix}\right.\)
\(\Rightarrow VT\ge VP\)
Dấu "=" xảy ra khi và chỉ khi \(\left(x-3\right)^2=0\Leftrightarrow x=3\)
Với mọi x ta có \(x^2+3x+3=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}>0;2x^2+3x+2=2\left(x+\frac{3}{4}\right)^2+\frac{7}{8}>0\)
Áp dụng bất đẳng thức cosi cho 3 số
\(\sqrt[3]{x^2+3x+3}=\sqrt[3]{\left(x^2+3x+3\right)\cdot1\cdot1}\le\frac{x^2+3x+3+1+1}{3}=\frac{x^2+3x+5}{3}\)
\(\sqrt[3]{2x^2+3x+2}=\sqrt[3]{\left(2x^2+3x+2\right)\cdot1\cdot1}\le\frac{2x^2+3x+4}{3}\)
\(\Rightarrow6x^2+12x+8\le\frac{x^2+3x+5}{3}+\frac{2x^2+3x+4}{3}=x^2+2x+3\)
\(\Rightarrow5x^2+10x+5\le0\Rightarrow5\left(x+1\right)^2\le0\Rightarrow x=-1\)
vậy phương trình có nghiệm x=-1
Bài này sử dụng cách đặt ẩn phụ sẽ đơn giản và nhanh hơn
a)√x2−9 - 3√x−3 =0
<=> (√x-3)(√x+3)-3√x-3=0
<=> (√x-3)(√x+3-3)=0
<=> (√x-3)√x=0
<=> √x-3=0
<=>x=9
b)√4x2−12x+9=x - 3
<=> √(2x -3)2 =x-3
<=> 2x-3=x-3
<=>2x-x=-3+3
<=>x=0
c)√x2+6x+9=3x-1
<=> √(x+3)2 =3x-1
<=> x+3=3x-1
<=> -2x=-4
<=> x=2
Nhớ cho mình 1 tim nha bạn
Sau em nên gõ các kí hiệu toán học ở phần Σ để mọi người dễ dàng đọc hơn nhé.
a.\(2\sqrt{12x}-3\sqrt{3x}+4\sqrt{48x}=17\)
=>\(4\sqrt{3x}-3\sqrt{3x}+16\sqrt{3x}=17\)
=>\(17\sqrt{3x}=17\)
=>\(\sqrt{3x}=1\)
=>\(x=\dfrac{1}{3}\)
Đặt \(\sqrt{2x^3+7}=a\)
=>6ax=3a^2+1+2x-4a
=>a=2x+1 hoặc a=1/3
=>2x^3+7=(2x+1)^2 hoặc 2x^3+7=1/3
=>\(x\in\left\{1;\dfrac{1-\sqrt{13}}{2};\sqrt[3]{-\dfrac{31}{9}}\right\}\)
a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
\(\Leftrightarrow x+5=4\)
hay x=-1
b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\Leftrightarrow\sqrt{x-1}=17\)
\(\Leftrightarrow x-1=289\)
hay x=290
gái xinh