K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2019

\(\sqrt{x^2-6x+10}=\sqrt{\left(x-3\right)^2+1}\ge\sqrt{1}=1\)

\(\sqrt{2x^2-12x+22}=\sqrt{2\left(x^2-6x+11\right)}=\sqrt{2\left(x-3\right)^2+4}\ge\sqrt{4}=2\)

Từ đó suy ra:\(\sqrt{x^2-6x+10}+\sqrt{2x^2-12x+22}\ge1+2=3\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x=3\)

Thử lại với x=3 thì pt thỏa mãn

Vậy pt có nghiệm duy nhất là x=3

NV
20 tháng 9 2020

\(\Leftrightarrow\sqrt{\left(x-3\right)^2+1}=1-2\left(x-3\right)^2\)

Do \(\left(x-3\right)^2\ge0\Rightarrow\left\{{}\begin{matrix}VT=\sqrt{\left(x-3\right)^2+1}\ge1\\VP=1-\left(x-3\right)^2\le1\end{matrix}\right.\)

\(\Rightarrow VT\ge VP\)

Dấu "=" xảy ra khi và chỉ khi \(\left(x-3\right)^2=0\Leftrightarrow x=3\)

22 tháng 9 2020

Với mọi x ta có \(x^2+3x+3=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}>0;2x^2+3x+2=2\left(x+\frac{3}{4}\right)^2+\frac{7}{8}>0\)

Áp dụng bất đẳng thức cosi cho 3 số

\(\sqrt[3]{x^2+3x+3}=\sqrt[3]{\left(x^2+3x+3\right)\cdot1\cdot1}\le\frac{x^2+3x+3+1+1}{3}=\frac{x^2+3x+5}{3}\)

\(\sqrt[3]{2x^2+3x+2}=\sqrt[3]{\left(2x^2+3x+2\right)\cdot1\cdot1}\le\frac{2x^2+3x+4}{3}\)

\(\Rightarrow6x^2+12x+8\le\frac{x^2+3x+5}{3}+\frac{2x^2+3x+4}{3}=x^2+2x+3\)

\(\Rightarrow5x^2+10x+5\le0\Rightarrow5\left(x+1\right)^2\le0\Rightarrow x=-1\)

vậy phương trình có nghiệm x=-1

22 tháng 9 2020

Bài này sử dụng cách đặt ẩn phụ sẽ đơn giản và nhanh hơn

30 tháng 8 2019

b) ĐK: \(1-\sqrt{3}< x< 1+\sqrt{3}\).Đặt:

\(\sqrt{2x^2-4x+3}-1+\sqrt{3x^2-6x+7}-2+x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2\left[\frac{2}{\sqrt{2x^2-4x+3}+1}+\frac{3}{\sqrt{3x^2-6x+7}+2}+1\right]=0\)

Cái ngoặc to vô nghiệm.Do đó x = 1(TM)

Vậy...

P.s: Nãy giờ em đi đánh giá lung tùng nào là "truy ngược dấu liên hợp" mất cả tiếng đồng hồ không ra và cảm thấy uổng phí quá:( Bài này nếu sai thì em chịu luôn

30 tháng 8 2019

Èo, bỏ chữ Đặt giúp em(nãy tính làm cách đặt ẩn phụ như không ra mà quên xóa đi) >_<

30 tháng 5 2020

ĐK: \(\hept{\begin{cases}x\ge2\\y\ge-\frac{1}{3}\end{cases}}\)

\(\sqrt{x-2}+x^3-6x^2+12x=\sqrt{3y+1}+27y^3+27y^2+9y+9\)

<=> \(\sqrt{x-2}+x^3-6x^2+12x-8=\sqrt{3y+1}+27y^3+27y^2+9y+1\)

<=> \(\sqrt{x-2}+\left(x-2\right)^3=\sqrt{3y+1}+\left(3y+1\right)^3\)

<=> \(\left(\sqrt{x-2}-\sqrt{3y+1}\right)+\left[\left(x-2\right)^3-\left(3y+1\right)^3\right]=0\)

<=> \(\frac{x-3y-3}{\sqrt{x-2}+\sqrt{3y+1}}+\left(x-3y-3\right)\left[\left(x-2\right)^2+\left(x-2\right)\left(3y+1\right)+\left(3y+1\right)^2\right]=0\)

<=> \(\left(x-3y-3\right)\left(\frac{1}{\sqrt{x-2}+\sqrt{3y+1}}+\left(x-2\right)^2+\left(x-2\right)\left(3y+1\right)+\left(3y+1\right)^2\right)=0\)

<=> \(x-3y-3=0\)

vì \(\frac{1}{\sqrt{x-2}+\sqrt{3y+1}}+\left(x-2\right)^2+\left(x-2\right)\left(3y+1\right)+\left(3y+1\right)^2>0\)

<=> x = 3y + 3

Thế vào phương trình trên ta có: 

\(2+2\left(3y+3\right)^2-2y^2+3\left(3y+3\right)y-4\left(3y+3\right)-3y=0\)

<=> \(25y^2+30y+8=0\Leftrightarrow\orbr{\begin{cases}y=-\frac{2}{5}\\y=-\frac{4}{5}\end{cases}}\)không thỏa mãn đk 

Vậy hệ vô nghiệm.