K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2018

\(x^2-3x+2+\left|x-1\right|=0\)

\(\Leftrightarrow x^2-2x-x+2+\left|x-1\right|=0\)

\(\Leftrightarrow x\left(x-2\right)-\left(x-2\right)+\left|x-1\right|=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-1\right)+\left|x-1\right|=0\)

\(\Leftrightarrow\left|x-1\right|=\left(x-1\right)\left(2-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=\left(x-1\right)\left(2-x\right)\left(x\ge1\right)\\x-1=\left(x-1\right)\left(x-2\right)\left(x< 1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-1\right)\left(2-x-1\right)=0\\\left(x-1\right)\left(x-2-1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left[{}\begin{matrix}x=1\left(loai\right)\\x=3\left(loai\right)\end{matrix}\right.\end{matrix}\right.\)

11 tháng 2 2016

\(a.\)  \(\left(x^2+1\right)^2+3x\left(x^2+1\right)+2x^2=0\)  \(\left(1\right)\)

Đặt  \(t=x^2+1\)   , khi đó phương trình \(\left(1\right)\)  trở thành:

\(t^2+3xt+2x^2=0\)

\(\Leftrightarrow\)  \(\left(t+x\right)\left(t+2x\right)=0\)

\(\Leftrightarrow\)  \(^{t+x=0}_{t+2x=0}\)

\(\text{*}\)  \(t+x=0\)

\(\Leftrightarrow\)  \(x^2+x+1=0\)

Vì  \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ne0\)  với mọi  \(x\)  nên phương trình vô nghiệm

\(\text{*}\)  \(t+2x=0\)

\(\Leftrightarrow\)  \(x^2+2x+1=0\)

\(\Leftrightarrow\)  \(\left(x+1\right)^2=0\)

\(\Leftrightarrow\)  \(x+1=0\)

\(\Leftrightarrow\)  \(x=-1\)

Vậy, tập nghiệm của pt là  \(S=\left\{-1\right\}\)

11 tháng 2 2016

\(b.\)  \(\left(x^2-9\right)^2=12x+1\)

\(\Leftrightarrow\)  \(x^4-18x^2+81-12x-1=0\)

\(\Leftrightarrow\)  \(x^4-18x^2-12x+80=0\)

\(\Leftrightarrow\)  \(x^4-2x^3+2x^3-4x^2-14x^2+28x-40x+80=0\)

\(\Leftrightarrow\)  \(x^3\left(x-2\right)+2x^2\left(x-2\right)-14x\left(x-2\right)-40\left(x-2\right)=0\)

\(\Leftrightarrow\)  \(\left(x-2\right)\left(x^3+2x^2-14x-40\right)=0\)

\(\Leftrightarrow\)  \(\left(x-2\right)\left(x-4\right)\left(x^2+6x+10\right)=0\)

  Vì  \(x^2+6x+10=\left(x+3\right)^2+1\ne0\)  với mọi  \(x\)

\(\Rightarrow\)  \(\left(x-2\right)\left(x-4\right)=0\)

\(\Leftrightarrow\)  \(^{x_1=2}_{x_2=4}\)

Vậy,  phương trình đã cho có các nghiệm  \(x_1=2;\)  \(x_2=4\)

19 tháng 8 2017

c.

  1. Tập xác định của phương trình

  2. 2

    Lời giải bằng phương pháp phân tích thành nhân tử

  3. 3

    Sử dụng phép biến đổi sau

  4. 4

    Giải phương trình

  5. 5

    Đơn giản biểu thức

  6. 6

    Giải phương trình

  7. 7

    Đơn giản biểu thức

  8. 8

    Giải phương trình

  9. 9

    Giải phương trình

  10. 10

    Đơn giản biểu thức

  11. 11

    Giải phương trình

  12. 12

    Đơn giản biểu thức

  13. 13

    Lời giải thu được

19 tháng 8 2017

a,

  1. Tập xác định của phương trình

  2. 2

    Lời giải bằng phương pháp phân tích thành nhân tử

  3. 3

    Sử dụng phép biến đổi sau

  4. 4

    Giải phương trình

  5. 5

    Đơn giản biểu thức

  6. 6

    Giải phương trình

  7. 7

    Đơn giản biểu thức

  8. 8

    Giải phương trình

  9. 9

    Đơn giản biểu thức

  10. 10

    Lời giải thu được

7 tháng 4 2017

Ta có:

\(x^3+5x^2+3x-9=0\)

\(\Leftrightarrow x^3+3x^2+2x^2+6x-3x-9=0\)

\(\Leftrightarrow x^2\left(x+3\right)+2x\left(x+3\right)-3\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2+2x-3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+3\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\\left(x+3\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)

Vậy PT có nghiệm là \(\left\{1;-3\right\}\)

30 tháng 1 2019

\(x^4+3x^2+x^3+2x+2=0\)

\(\Leftrightarrow x^4+x^3+x^2+2x^2+2x+2=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(x^2+x+1\right)=0\)

Do 2 thừa số ở VT đều > 0

\(\Rightarrow\) PTVN

30 tháng 1 2019

\(x^4+x^3+3x^2+2x+2=0\\ \Leftrightarrow x^4+x^3+x^2+2x^2+2x+2=0\\ \Leftrightarrow x^2\left(x^2+x+1\right)+2\left(x^2+x+1\right)=0\\ \Leftrightarrow\left(x^2+x+1\right)\left(x^2+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2+x+1=0\left(VN\right)\\x^2+2=0\left(VN\right)\end{matrix}\right.\)

Vậy phương trình vô nghiệm

a: TH1: x<1

Pt sẽ là 1-x+2-x=1

=>3-2x=1

=>x=1(loại)

TH2: 1<=x<2

Pt sẽ là x-1+2-x=1

=>1=1(luôn đúng)

TH3: x>=2

Pt sẽ là x-1+x-2=1

=>2x=4

=>x=2(nhận)

b: Đề thiếu vế phải rồi bạn

3 tháng 3 2019

Xem lại đề

3 tháng 3 2019

minh viet sai:

giai phuong trinh (x-2)^3+(3x-1)(3x 1)=(x 1)^3

9 tháng 5 2017

-2x2 - x - 2 > 0

=> -2x2 - x - 2 = 0

=> x không € R

-2x2 - x - 2 > 0, a = -2

=> x € tập hợp rỗng