K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2018

(12x+7)2(3x+2)(2x+1)=3

\(\left(12x+7\right)^24\cdot\left(3x+2\right)\cdot6\left(2x+1\right)=3\cdot4\cdot6\)

\(\left(12x+7\right)^2\left(12x+8\right)\left(12x+6\right)=72\)

Đặt 12x+7=t.Ta có phương trình ẩn t:

\(t^2\left(t+1\right)\left(t-1\right)=72\)

\(t^2\left(t^2-1\right)=72\)

⇔t4-t2-72=0

⇔t4-9t2+8t2-72=0

⇔t2(t2-9)+8(t2-9)=0

⇔(t2-9)(t2+8)=0

mà t2+8>0 với mọi t

⇒t2-9=0

⇔(t-3)(t+3)=0

\(\left\{{}\begin{matrix}t=3\\t=-3\end{matrix}\right.\)

\(\left\{{}\begin{matrix}12x+7=3\\12x+7=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{3}\\x=-\dfrac{5}{6}\end{matrix}\right.\)

Vậy phương trình đã cho có tập nghiệm là S=\(\left\{-\dfrac{1}{3};-\dfrac{5}{6}\right\}\)

Chúc bạn học tốt

12 tháng 11 2016

a)\(\frac{2-x}{2007}-1=\frac{1-x}{2008}-\frac{x}{2009}\)

\(\Leftrightarrow\frac{2-x}{2007}-1+2=\frac{1-x}{2008}+1-\frac{x}{2009}+1\)

\(\Leftrightarrow\frac{2-x}{2007}+\frac{2007}{2007}=\frac{1-x}{2008}+\frac{2008}{2008}-\frac{x}{2009}+\frac{2009}{2009}\)

\(\Leftrightarrow\frac{2009-x}{2007}=\frac{2009-x}{2008}-\frac{2009-x}{2009}\)

\(\Leftrightarrow\frac{2009-x}{2007}-\frac{2009-x}{2008}+\frac{2009-x}{2009}=0\)

\(\Leftrightarrow\left(2009-x\right)\left(\frac{1}{2007}-\frac{1}{2008}+\frac{1}{2009}\right)=0\)

\(\Leftrightarrow2009-x=0\).Do \(\frac{1}{2007}-\frac{1}{2008}+\frac{1}{2009}\ne0\)

\(\Leftrightarrow x=2009\)

b)\(\left(12x+7\right)^2\left(3x+2\right)\left(2x+1\right)=3\)

\(\Leftrightarrow\left(12^2x^2+2\cdot12\cdot7x+7^2\right)\left(6x^2+7x+2\right)-3=0\)

\(\Leftrightarrow\left[24\left(6x^2+7x+2\right)+1\right]\left(6x^2+7x+2\right)-3=0\)

Đặt \(t=6x^2+7x+2\) ta có:

\(\left(24t+1\right)t-3=0\)\(\Leftrightarrow12t^2+t-3=0\)

Suy ra t rồi tìm đc x

16 tháng 11 2016

VD: 

INPUT: 4 

OUTPUT: 

1

1   1

1    2    1

1    3    3    1

1    4    6     4     1

17 tháng 5 2017

(12x+7)2(3x+2)(2x+1)=3

<=> (144x2+168x+49)(6x2+7x+2)=3

<=>(144x2+168x+49)(144x+168+48)=72

Đặt 144x2+168x+48=t

=> 144x2+168x+49=t+1(*)

Do đó phương trình đã cho là

(t+1)t=72

<=> t2+t-72=0

<=> (t-8)(t+9)=0

<=>\(\left[{}\begin{matrix}t-8=0\\t+9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=8\\t=-9\end{matrix}\right.\)

Bạn tự thay t vào (*) rồi tìm x nha

10 tháng 1 2018

\(\left(12x+7\right)^2\left(3x+2\right)\left(2x+1\right)=3\)

\(\Leftrightarrow\left(12x+7\right)^2\cdot4\left(3x+2\right)\cdot6\left(2x+1\right)=3\cdot4\cdot6\)

\(\Leftrightarrow\left(12x+7\right)^2\left(12x+8\right)\left(12x+6\right)=72\) (1)

Đặt 12x + 7 = a

(1) \(\Leftrightarrow a^2\left(a+1\right)\left(a-1\right)=72\)

\(\Leftrightarrow a^2\left(a^2-1\right)=72\) (2)

Đặt \(a^2=b\)

(2) \(\Leftrightarrow b\left(b-1\right)=72\)

\(\Leftrightarrow b^2-b-72=0\)

\(\Leftrightarrow b^2+8b-9b-72=0\)

\(\Leftrightarrow b\left(b+8\right)-9\left(b+8\right)=0\)

\(\Leftrightarrow\left(b-9\right)\left(b+8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}b-9=0\\b+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}b=9\\b=-8\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}a^2=9\Leftrightarrow a=\pm3\\a^2=-8\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}12x+7=3\\12x+7=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}12x=-4\\12x=-10\end{matrix}\right.\Leftrightarrow}\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=-\dfrac{5}{6}\end{matrix}\right.\)

14 tháng 1 2020

\(a^2\)không thể bằng -8 nên hãy xem xét lại

6 tháng 4 2020

8,

b, (-x2+12x+4)/(x2+3x-4) = 12/(x+4) + 12/(3x-3)

(=) (-x2+12x+4)/(x-1)(x+4) -12(x-1)/(x-1)(x+4) - 4(x+4)/(x-1)(x+4) = 0

(=) -x2 +12x +4 -12x +12 -4x -16 = 0

(=) -x2 -4x = 0

(=) -x(x+4) = 0

(=) -x = 0 hoặc x +4 = 0

(=) x=0 hoặc x=-4

Vậy S={0;4}

Chúc bạn học tốt.

19 tháng 2 2019

\(\left(12x+7\right)^2\left(3x+2\right)\left(2x+1\right)=3\)

\(\Leftrightarrow\left(144x^2+168x+49\right)\left(6x^2+7x+2\right)=3\)

\(\Leftrightarrow\left(144x^2+168x+49\right)\left(144x^2+168+48\right)=72\)

Đặt \(144x^2+168x+48=u\)

\(\Rightarrow144x^2+168x+49=u+1\left(1\right)\)

Do đó: \(u\left(u+1\right)=72\Leftrightarrow u^2+u-72=0\)

\(\Leftrightarrow\left(u-8\right)\left(u+9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}u-8=0\\u+9=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}u=8\\u=-9\end{matrix}\right.\)

Với \(u=8;u=-9\) bạn thay vào (1) và tìm x nha.

26 tháng 2 2016

\(\Leftrightarrow\frac{-x^4-3x^3-6x+4}{\left(x^2+2x+2\right)\left(x^2+4x+2\right)}=0\)

\(\Rightarrow\frac{1}{x^2+2x+2}=0\left(1\right)\)

\(\Rightarrow\frac{1}{x^2+4x+2=0}\left(2\right)\)

<=>x2+x+2=0(1)

=>12-4(1.2)=-7(1)

vì -7<0 =>\(\Delta<0\)(1)

=>x4-3x3-6x+4=0(2)

=>(-4)2-4(1.2)=8

\(\Rightarrow x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}=\frac{4\pm\sqrt{8}}{2}\)

=>x=\(2-\sqrt{2}\) hoặc \(\sqrt{2}+2\)

b) tự làm tương tự

26 tháng 2 2016

thông cảm tụi mình chưa dọc đen ta nha