Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
a) √81a - √36a - √144a = 9√a - 6√a - 12√a = -9√a
b) √75 - √48 - √300 = 5√3 - 4√3 - 10√3 = -9√3
Bài 2
a) √2x-3 = 7
⇒ 2x-3 = 49 ⇔ 2x = 52 ⇔ x =26
c) √16x - √9x = 2
⇔ 4√x - 3√x = 2 ⇔ √x = 2 ⇔ x = 4
Bài 3
a) √(2-√5)2 = l 2-√5 l = √5-2
b) (a - 3)2 + (a - 9)
= a2 - 6a + 9 + a - 9 = a2 - 5a
c) A=\(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}:\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
=\(\left(\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\)
=\(\left(\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\right)\)
=\(\left(\dfrac{-3\sqrt{x}-3}{x-9}\right).\left(\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\right)\)
=\(\left(\dfrac{-3\left(\sqrt{x}+1\right)}{x-9}\right).\left(\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\right)\)
=\(\dfrac{-3\sqrt{x}+9}{x-9}\)
a: \(\Leftrightarrow4x^2-2\sqrt{3}x-1+\sqrt{3}=0\)
\(\text{Δ}=\left(-2\sqrt{3}\right)^2-4\cdot4\cdot\left(\sqrt{3}-1\right)\)
\(=12-16\sqrt{3}+16=28-16\sqrt{3}=\left(4-2\sqrt{3}\right)^2\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{2\sqrt{3}-4+2\sqrt{3}}{8}=\dfrac{4\sqrt{3}-4}{8}=\dfrac{\sqrt{3}-1}{2}\\x_2=\dfrac{2\sqrt{3}+4-2\sqrt{3}}{8}=\dfrac{1}{2}\end{matrix}\right.\)
b: Đặt \(x^2=a\)
Pt sẽ là \(a^2-7a+3=0\)
\(\text{Δ}=\left(-7\right)^2-4\cdot1\cdot3=49-12=37>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}a_1=\dfrac{7-\sqrt{37}}{2}\left(nhận\right)\\a_2=\dfrac{7+\sqrt{37}}{2}\left(nhận\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm\sqrt{\dfrac{7-\sqrt{37}}{2}}\\x=\pm\sqrt{\dfrac{7+\sqrt{37}}{2}}\end{matrix}\right.\)
c: \(\Leftrightarrow2x^2-x^2+4=-x-2\)
\(\Leftrightarrow x^2+4+x+2=0\)
\(\Leftrightarrow x^2+x+6=0\)
\(\text{Δ}=1^2-4\cdot1\cdot6=-23< 0\)
Do đó:Phương trình vô nghiệm
a) điều kiện xác định \(x-2\ge0vàx^2-4x+3\ge0\)
\(pt\Leftrightarrow x^2-4x+3=x-2\Leftrightarrow x^2-5x+5=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5+\sqrt{5}}{2}\\x=\dfrac{5-\sqrt{5}}{2}\left(L\right)\end{matrix}\right.\) bạn giải nó bằng cách giải den ta nha .
vậy \(x=\dfrac{5+\sqrt{5}}{2}\)
b) điều kiện xác định : \(x\ge1\)
đặc \(\sqrt{x-1}=t\left(t\ge0\right)\)
\(pt\Leftrightarrow2\left(\dfrac{t}{2}-3\right)=\dfrac{2.2t}{3}-\dfrac{1}{3}\) giải phương trình này rồi thế ngược lại là xong
c) điều kiện xác định : \(x\ge\dfrac{7}{9}\)
\(pt\Leftrightarrow9x-7=7x+5\Leftrightarrow x=6\) vậy \(x=6\)
d) câu cuối chờ nhát h mk chưa nghỉ ra
d) Ta có pt \(4+\sqrt{2x+6-6\sqrt{2x-3}}=\sqrt{2x-2+2\sqrt{2x-3}}=0\)
\(\Leftrightarrow4+\sqrt{2x-3-6\sqrt{2x-3}+9}=\sqrt{2x-3-2\sqrt{2x-3}+1}\Leftrightarrow4+\left|\sqrt{2x-3}-3\right|=\left|\sqrt{2x-3}-1\right|\)
Đặt \(\sqrt{2x-3}=a\left(a\ge0\right),pt\Leftrightarrow4+\left|a-3\right|=\left|a-1\right|\)
xét \(a\ge3,pt\Leftrightarrow4+a-3=a-1\Leftrightarrow0a=1\left(VN\right)\)
xét \(a\le1.pt\Leftrightarrow4+3-a=1-a\Leftrightarrow0a=6\left(VN\right)\)
xét \(3>x>1,pt\Leftrightarrow4+3-a=a-1\Leftrightarrow a=1\)(k thỏa mãn )
=> pt vô nghiệm !
2. ĐK: \(x\ge0\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt{x}\ge0\\b=\sqrt{x^2+4}\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=2a^2\\x^2+4=b^2\\3\sqrt{x^3+4x}=3ab\end{matrix}\right.\)
pt trên được viết lại thành
\(2a^2+b^2-3ab=0\)
\(\Leftrightarrow\left(a-b\right)\left(2a-b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=\dfrac{1}{2}b\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\sqrt{x^2+4}\\\sqrt{x}=\dfrac{1}{2}\sqrt{x^2+4}\end{matrix}\right.\)
Đến đây dễ rồi nhé ^^
a: \(\Leftrightarrow\dfrac{2x-3}{x-1}=4\)
=>4x-4=2x-3
=>2x=1
hay x=1/2
b: \(\Leftrightarrow\sqrt{\dfrac{2x-3}{x-1}}=2\)
=>(2x-3)=4x-4
=>4x-4=2x-3
=>2x=1
hay x=1/2(nhận)
c: \(\Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\)
=>2x+3=0 hoặc 2x-3=4
=>x=-3/2 hoặc x=7/2
e: \(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)
=>căn (x-5)=2
=>x-5=4
hay x=9
Mọi ngươi giúp em với ạ chứ em làm câu a Bài 1 và 2 ra kết quả dài quá :(
Bài 1:
a: \(P=\dfrac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)
\(=\dfrac{a-\sqrt{a}-12}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}=\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\)
b: Để P<1 thì P-1<0
\(\Leftrightarrow\dfrac{\sqrt{a}-4-\sqrt{a}+2}{\sqrt{a}-2}< 0\)
=>căn a-2>0
=>a>4
a) điều kiện xác định : \(x\ge1\)
ta có : \(\sqrt{\dfrac{x-1}{4}}-3=\sqrt{\dfrac{4x-4}{9}}\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-3=\dfrac{2}{3}\sqrt{x-1}\)
\(\Leftrightarrow\dfrac{1}{6}\sqrt{x-1}=-3\left(vôlí\right)\) vậy phương trình vô nghiệm
b) điều kiện xác định \(x\ge3\)
ta có : \(\sqrt{x^2-4x+4}+\sqrt{x^2+6x+9}=x-3\)
\(\Leftrightarrow\sqrt{\left(x-2\right)^2}+\sqrt{\left(x+3\right)^2}=x-3\) \(\Leftrightarrow\left|x-2\right|+\left|x+3\right|=x-3\)
\(\Leftrightarrow x-2+x+3=x-3\Leftrightarrow x=-4\left(L\right)\) vậy phương trình vô nghiệm
c) điều kiện xác định : \(\left[{}\begin{matrix}x\ge\dfrac{3}{2}\\x< 1\end{matrix}\right.\)
ta có : \(\sqrt{\dfrac{2x-3}{x-1}}=2\) \(\Leftrightarrow\dfrac{2x-3}{x-1}=4\Leftrightarrow2x-3=4x-4\)
\(\Leftrightarrow2x=1\Leftrightarrow x=\dfrac{1}{2}\left(tmđk\right)\) vậy \(x=\dfrac{1}{2}\)
\(a,ĐKXĐ:x\ge\dfrac{3}{2}\)
\(\sqrt{2x-3}=2\sqrt{x}-2\)
\(2x-3=4x-8\sqrt{x}+4\)
\(2x-8\sqrt{x}+7=0\)
\(\sqrt{\Delta}=\sqrt{\left(-8\right)^2-4.2.7}=2\sqrt{2}\)
\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{4+\sqrt{2}}{2}\left(TM\right)\)
\(x_2=\dfrac{4-\sqrt{2}}{2}\left(KTM\right)\)
\(b,\sqrt{\dfrac{4x+3}{\sqrt{x+1}}}=3\)
\(ĐKXĐ:x\ge-\dfrac{3}{4}\)
\(\dfrac{4x+3}{\sqrt{x+1}}=9\)
\(\left(4x+3\right)^2=81x+81\)
\(16x^2+24x+9=81x+81\)
\(16x^2-57x-72=0\)
\(\sqrt{\Delta}=9\sqrt{97}\)
\(x_1=\dfrac{57+9\sqrt{97}}{32}\left(TM\right)\)
\(x_2=\dfrac{57-9\sqrt{97}}{32}\left(KTM\right)\)
\(c,ĐKXĐ:x>1\)
\(\dfrac{\sqrt{x^2+3x-x-3}}{\sqrt{x-1}}=x+3\)
\(\dfrac{\sqrt{\left(x-1\right)\left(x+3\right)}}{\sqrt{x-1}}=x+3\)
\(\sqrt{x+3}=x+3\)
\(x+3=x^2+6x+9\)
\(x^2+5x+6=0\)
\(\left(x+3\right)\left(x+2\right)=0\)
\(\left[{}\begin{matrix}x=-3\left(KTM\right)\\x=-2\left(KTM\right)\end{matrix}\right.\)
\(d,x>3\)
\(\dfrac{\sqrt{x^2-4x+3}}{\sqrt{x-3}}=x-1\)
\(\dfrac{\sqrt{x-3}\sqrt{x-1}}{\sqrt{x-3}}=x-1\)
\(\sqrt{x-1}=x-1\)
\(\sqrt{x-1}=1\)
\(x=2\left(KTM\right)\)
\(\)