K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2022

vì \(5+x^2\ge5\left(\forall x\in R\right)\) 

=>6x-3=0

=>x=\(\dfrac{1}{2}\)

KL:S=\(\dfrac{1}{2}\)

18 tháng 3 2020

\(\frac{x^2-x-6}{x-3}=\frac{x^2-3x+2x-6}{x-3}=\frac{x\left(x-3\right)+2\left(x-3\right)}{\left(x-3\right)}=x+2=0\Leftrightarrow x=-2\)

\(\frac{x^2+2x-\left(3x+6\right)}{x+2}=\frac{x\left(x+2\right)-3\left(x+2\right)}{x+2}=x-3=0\Leftrightarrow x=3\)

\(\frac{4}{x-2}-\left(x-2\right)=0\Leftrightarrow\frac{4}{a}-a=0\left(a=x-2\right)\Leftrightarrow\frac{4}{a}=a\Leftrightarrow a^2=4\Leftrightarrow a=\pm2\Leftrightarrow x=4\text{ hoặc 0}\)

18 tháng 3 2020

a) ĐKXĐ: x \(\ne\)3

Ta có: \(\frac{x^2-x-6}{x-3}=0\)

<=> x2 - x - 6 = 0

<=> x2 - 3x + 2x - 6 = 0

<=> (x + 2)(x - 3) = 0

<=> \(\orbr{\begin{cases}x+2=0\\x-3=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-2\\x=3\left(vn\right)\end{cases}}\)

Vậy S = {-2}

b) ĐKXĐ: x \(\ne\)-2

Ta có: \(\frac{\left(x^2+2x\right)-\left(3x+6\right)}{x+2}=0\)

<=> \(x\left(x+2\right)-3\left(x+2\right)=0\)

<=> \(\left(x-3\right)\left(x+2\right)=0\)

<=> \(\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=3\\x=-2\left(vn\right)\end{cases}}\)

Vậy S = {3}

c) ĐKXĐ: x \(\ne\)2

Ta có: \(\frac{4}{x-2}-x+2=0\)

<=> \(\frac{4-\left(x-2\right)^2}{x-2}=0\)

<=> \(\left(2-x+2\right)\left(2+x-2\right)=0\)

<=> \(x\left(4-x\right)=0\)

<=> \(\orbr{\begin{cases}x=0\\4-x=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
Vậy S = {0; 4}

7 tháng 3 2020

Gợi ý :

Bài 1 : Cộng thêm 1 vào 3 phân thức đầu, trừ cho 3 ở phân thức thứ 4, có nhân tử chung là (x+2020)

Bài 2 : Trừ mỗi phân thức cho 1, chuyển vế và có nhân tử chung là (x-2021)

Bài 3 : Phân thức thứ nhất trừ đi 1, phân thức hai trù đi 2, phân thức ba trừ đi 3, phân thức bốn trừ cho 4, phân thức 5 trừ cho 5. Có nhân tử chung là (x-100)

7 tháng 3 2020

bài 3

\(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15.\)

=>\(\frac{x-90}{10}-1+\frac{x-76}{12}-2+\frac{x-58}{14}-3+\frac{x-36}{16}-4+\frac{x-15}{17}-5=0\)

=>\(\frac{x-100}{10}+\frac{x-100}{12}+\frac{x-100}{14}+\frac{x-100}{16}+\frac{x-100}{17}=0\)

=>\(\left(x-100\right).\left(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\right)=0\)

=>(x-100)=0 do \(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\ne0\)

=> x=100

11 tháng 8 2017

câu 1 theo cách nhẩm nghiệm thì mình thấy hình như bn chép sai đề r

x2-1/x-1>0=>(x-1)(x+1)/x-1>0 rút gọn vế trái còn x+1>0=.x>-1

x2-6x+9>0=>x-3(x-3)>0=>xảy ra khi 2 thừa số này cùng dấu =>x>3 hoặc x<3

25 tháng 4 2017

tui giải câu a thôi nha

chia phương trình cho \(x^2\)ta có:

\(x^2+3x+4+\frac{3}{x}+\frac{1}{x^2}\)=0

\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)+3\left(x+\frac{1}{x}\right)+4\)=0

đặt \(x+\frac{1}{x}=a\Rightarrow x^2+\frac{1}{x^2}=a^2-2\)\(\Rightarrow a^2-2+3a+4=0\)\(\Leftrightarrow a^2+3a+2=0\)

\(\Leftrightarrow a^2+a+2a+2=0\Leftrightarrow\left(a+1\right)\left(a+2\right)=0\)

\(\Leftrightarrow a+1=0\)hoặc\(a+2=0\)

*a+1=0\(\Rightarrow a=-1\Rightarrow x+\frac{1}{x}=1\Rightarrow x+\frac{1}{x}-1=0\)\(\Leftrightarrow\frac{x^2-x+1}{x}=0\Leftrightarrow x^2-x+1=0\)

\(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)\(\Rightarrow\)loại

*a+2=0\(\Rightarrow a=-2\Rightarrow x+\frac{1}{x}=-2\Rightarrow x+\frac{1}{x}+2=0\)\(\Leftrightarrow\frac{x^2+2x+1}{x}=0\Leftrightarrow\frac{\left(x+1\right)^2}{x}=0\)

\(\Leftrightarrow\left(x+1\right)^2=0\Leftrightarrow x=-1\)

Vậy phương trình có nghiệm x=-1

21 tháng 7 2016

a)2x-5/x+5=3=>2x-5=3(x+5)=3x+15

=>2x=3x+20=>x=-20

b)(x^2-6)/x=x+3/2

=>(x^2-6)/x - x=3/2

=>-6/x[quy đồng]=3/2

=>x=-4

c)Để (x^2+2x)(3x+6)/x3=0

thì  (x^2+2x)(3x+6)=0

=x(x+2)-3(x+2)=(x-3)(x+2)=0

=>x=3 hoặc x=-2

Mà ở mẫu có x-3 nếu x=3 thì mẫu =0=>loại

Vậy x=2

d)5/3x+2=2x1

=>5=(3x+2)(2x-1)

Tìm ước của 5 rùi thay vào 3x+2 và 2x-1 rùi tìm x,cái đó dễ nên bn tự lm nhé

e)

(2x1/x1)+1=1/x1

=>1/x-1-2x-1/x-1=1

=>-2x/x-1=1

=>-2x=x-1

=>x=1/3

g)(x+3/x+1)+(x2/x)=2

=>quy đồng rùi tính và tìm x nhé bn,mk mỏi tay rùi

nhớ tick cho mk nha,mk siêng lắm ms ghi cho bn nhiều thế này nè,nhớ tick nha,thanks

21 tháng 7 2016

a)  \(\frac{2x-5}{x+5}=3\)

  \(\Leftrightarrow2x-5=3\left(x+5\right)\)

  \(\Leftrightarrow2x-5=3x+15\)

  \(\Leftrightarrow2x-3x=15+5\)

  \(\Leftrightarrow-x=20\\ \)

   \(\Leftrightarrow x=-20\)

b) \(\frac{x^2-6}{x}=x+\frac{3}{2}\)

  \(\Leftrightarrow\frac{x^2-6}{x}=\frac{2x+3}{2}\)

  \(\Leftrightarrow2\left(x^2-6\right)=x\left(2x+3\right)\)

  \(\Leftrightarrow2x^2-12=2x^2+3x\)

  \(\Leftrightarrow3x=-12\)

  \(\Leftrightarrow x=-4\) 

c) \(\frac{\left(x^2+2x\right)-\left(3x+6\right)}{x-3}=0\)

  \(\Leftrightarrow\frac{x\left(x+2\right)-3\left(x+2\right)}{x-3}=0\)

  \(\Leftrightarrow\frac{\left(x+2\right)\left(x-3\right)}{x-3}=0\)

  \(\Leftrightarrow x+2=0\)

  \(\Leftrightarrow x=-2\)

d)  \(\frac{5}{3x+2}=2x-1\)

 \(\Leftrightarrow5=\left(2x-1\right)\left(3x+2\right)\)

 \(\Leftrightarrow5=6x^2+x-2\)

 \(\Leftrightarrow6x^2+x-7=0\)

 \(\Leftrightarrow\left[\begin{array}{nghiempt}1\\\frac{-7}{6}\end{array}\right.\)

e)  \(\frac{2x-1}{x-1}+1=\frac{1}{x-1}\)

   \(\Leftrightarrow2x-1+x-1=1\)

   \(\Leftrightarrow3x=3\)

   \(\Leftrightarrow x=1\)

g) \(\frac{x+3}{x+1}+\frac{x-2}{x}=2\)

  \(\Leftrightarrow\frac{x\left(x+3\right)}{x\left(x+1\right)}+\frac{\left(x-2\right)\left(x+1\right)}{x\left(x+1\right)}=\frac{2x\left(x+1\right)}{x\left(x+1\right)}\)

  \(\Leftrightarrow x\left(x+3\right)+\left(x-2\right)\left(x+1\right)=2x\left(x+1\right)\)

  \(\Leftrightarrow x^2+3x+x^2-x-2=2x^2+2x\)

  \(\Leftrightarrow2x-2x-2=0\)

  \(\Leftrightarrow-2=0\)    \(\Rightarrow\)Phương trình vô nghiệm 

 

 

 

4 tháng 3 2020

(x2 + x  + 1)(6 - 2x) = 0

<=> 6 - 2x = 0 (do x2 + x + 1 > 0)

<=> 2x = 6

<=> x = 3

Vậy S = {3}

(8x - 4)(x2 + 2x + 2) = 0

<=> 8x - 4 = 0 (vì x2 + 2x + 2 > 0)

<=> 8x = 4

<=> x = 1/2 

Vậy S  = {1/2}

x3 - 7x + 6 = 0

<=> x3 - x - 6x + 6 = 0

<=> x(x2 - 1) - 6(x - 1) = 0

<=> x(x - 1)(x + 1) - 6(x - 1) = 0

<=> (x2 + x - 6)(x - 1) = 0

<=> (x2 + 3x - 2x - 6)(x - 1) = 0

<=> (x + 3)(x - 2)(x - 1) = 0

<=> x + 3 = 0

hoặc x - 2 = 0

hoặc x  - 1 = 0

<=> x = -3

hoặc x = 2

hoặc x = 1

Vậy S = {-3; 1; 2}

x5 - 5x3 + 4x = 0

<=> x(x4 - 5x2 + 4) = 0

<=> x(x4 - x2 - 4x2 + 4) = 0

<=> x[x2(x2 - 1) - 4(x2 - 1)] = 0

<=> x(x - 2)(x + 2)(x - 1)(x + 1) = 0

<=> x = 0 hoặc x - 2 = 0 hoặc x + 2 = 0 hoặc x - 1 = 0 hoặc x  + 1 = 0

<=> x = 0 hoặc x = 2 hoặc x = -2 hoặc x = 1 hoặc x = -1

Vậy S = {-2; -1; 0; 1; 2}

4 tháng 3 2020

+ Ta có: \(\left(x^2+x+1\right).\left(6-2x\right)=0\)

 - Ta lại có: \(x^2+x+1=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

- Vì \(x^2+x+1>0\forall x\)mà \(\left(x^2+x+1\right).\left(6-2x\right)=0\)

  \(\Rightarrow6-2x=0\Leftrightarrow-2x=-6\Leftrightarrow x=3\left(TM\right)\)

Vậy \(S=\left\{3\right\}\)

+ Ta có: \(\left(8x-4\right).\left(x^2+2x+2\right)=0\)

 - Ta lại có: \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\ge1>0\forall x\)

 - Vì \(x^2+2x+2>0\forall x\)mà \(\left(8x-4\right).\left(x^2+2x+2\right)=0\)

   \(\Rightarrow8x-4=0\Leftrightarrow8x=4\Leftrightarrow x=\frac{1}{2}\left(TM\right)\)

Vậy \(S=\left\{\frac{1}{2}\right\}\)

+ Ta có: \(x^3-7x+6=0\)

       \(\Leftrightarrow\left(x^3-x^2\right)+\left(x^2-x\right)+\left(6x-6\right)=0\)

       \(\Leftrightarrow x^2.\left(x-1\right)+x.\left(x-1\right)-6.\left(x-1\right)=0\)

       \(\Leftrightarrow\left(x-1\right).\left(x^2+x-6\right)=0\)

       \(\Leftrightarrow\left(x-1\right).\left[\left(x^2-2x\right)+\left(3x-6\right)\right]=0\) 

       \(\Leftrightarrow\left(x-1\right).\left[x.\left(x-2\right)+3.\left(x-2\right)\right]=0\)

       \(\Leftrightarrow\left(x-1\right).\left(x-2\right).\left(x+3\right)=0\)

       \(\Leftrightarrow x=1\left(TM\right)\)hoặc \(x=2\left(TM\right)\)hoặc \(x=-3\left(TM\right)\)

 Vậy \(S=\left\{-3;1;2\right\}\)

 + Ta có: \(x^5-5x^3+4x=0\)

        \(\Leftrightarrow x.\left(x^4-5x^2+4\right)=0\)

       \(\Leftrightarrow x.\left[\left(x^4-x^2\right)-\left(4x^2-4\right)\right]=0\)

       \(\Leftrightarrow x.\left[x^2.\left(x^2-1\right)-4.\left(x^2-1\right)\right]=0\)

       \(\Leftrightarrow x.\left(x^2-1\right).\left(x^2-4\right)=0\)

       \(\Leftrightarrow x=0\left(TM\right)\)

hoặc  \(x^2-1=0\Leftrightarrow x^2=1\Leftrightarrow x=\pm1\left(TM\right)\)

hoặc \(x^2-4=0\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\left(TM\right)\)

Vậy \(S=\left\{-2;-1;0;1;2\right\}\)

!!@@# ^_^ Chúc bạn hok tốt ^_^#@@!!      

13 tháng 4 2020

đề bài kiểu gì thế

11 tháng 3 2020

ĐKXĐ:\(x\ne\pm2;x\ne-3;x\ne0\)

\(P=1+\frac{x-3}{x^2+5x+6}\left(\frac{8x^2}{4x^3-8x^2}-\frac{3x}{3x^2-12}-\frac{1}{x+2}\right)\)

\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\left[\frac{8x^2}{4x^2\left(x-2\right)}-\frac{3x}{3\left(x^2-4\right)}-\frac{1}{x+2}\right]\)

\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\left(\frac{2}{x-2}-\frac{x}{x^2-4}-\frac{1}{x+2}\right)\)

\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\left[\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x-2\right)\left(x+2\right)}\right]\)

\(=1+\frac{x-3}{\left(x+2\right)\left(x+3\right)}\cdot\frac{2x+4-x-x+4}{\left(x-2\right)\left(x+2\right)}\)

\(=1+\frac{8\left(x-3\right)}{\left(x+2\right)^2\left(x+3\right)\left(x-2\right)}\)

Đề sai à ??