Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(x^2-x-3\right)\left(x^2+x-1\right)=0\)
hay \(x\in\left\{\dfrac{1+\sqrt{13}}{2};\dfrac{1-\sqrt{13}}{2};\dfrac{-1+\sqrt{5}}{2};\dfrac{-1-\sqrt{5}}{2}\right\}\)
Hình như đề của bạn sai nên mình sửa lại nhé
x4 + 2x3 +5x2 +4x-12=0
⇔x4-x3+3x3-3x2+8x2-8x+12x-12=0
⇔x3(x-1)+3x2(x-1)+8x(x-1)+12(x-1)=0
⇔(x-1)(x3+3x2+8x+12)=0
⇔(x-1)(x+2)(x2+x+6)=0
ta có x2+x+6 >0 ∀x
⇔\(\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy...
- \(\left(2x+5\right)^2=\left(x+2\right)^2\Leftrightarrow\left(2x+5+x+2\right)\left(2x+5-x-2\right)=0\)\(\Leftrightarrow\left(3x+7\right)\left(x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x=-\frac{7}{3}\\x=-3\end{cases}}\)
- \(x^2-5x+6=0\Leftrightarrow x^2-6x+x-6=0\Leftrightarrow x\left(x-6\right)+\left(x-6\right)=0\)\(\left(x+1\right)\left(x-6\right)=0\Leftrightarrow\orbr{\begin{cases}x=6\\x=-1\end{cases}}\)
- \(2x^3+6x^2=x^2+3x\Leftrightarrow2x^2\left(x+3\right)=x\left(x+3\right)\)\(\Leftrightarrow\left(x+3\right)\left(2x^2-x\right)=0\Leftrightarrow x\left(2x-1\right)\left(x+3\right)=0\Leftrightarrow\)\(x=0\)hoặc \(x=\frac{1}{2}\)hoặc \(x=-3\)
\(bpt\Leftrightarrow\left[\left(x+1\right)^2+3\right]\left(x-1\right)< 0\)
\(\left(x+1\right)^2+3>0\Leftrightarrow x-1< 0\Leftrightarrow x< 1\)
Đặt a = x2 + 3x - 4 ; b = 2x2 - 5x + 3
=> 3x2 - 2x - 1 = a + b
khi đó phương trình đã cho có dạng: a3 + b3 = (a+ b)3
=> a3 + b3 = a3 + b3 + 3ab(a + b) => 3ab (a+b) = 0 => a= 0 hoặc b = 0 hoặc a = -b
Nếu a = 0 => x2 + 3x - 4 = 0 => x2 + 4x- x - 4 = 0 => (x - 1)(x + 4) = 0 => x = 1; -4
Nếu b = 0 => 2x2 - 5x + 3 = 0 => 2x2 - 2x - 3x + 3 = 0 => (2x-3)(x - 1) = 0 => x = 3/2; 1
Nếu a = - b => - (2x2 - 5x + 3) = x2 + 3x - 4 => 3x2 - 2x - 1 = 0 => 3x2 - 3x + x - 1 = 0 => (3x + 1)(x - 1) = 0 => x = -1/3; 1
Vậy x = 1; 3/2; -1/3; -4
Pt ⇔4x2+x+3+4xx+3−−−−√+2x−1+1−22x−1−−−−−√=0⇔(2x−x+3−−−−√)2−√−1)2=0⇔x=1⇔4x2+x+3+4xx+3+2x−1+1−22x−1=0⇔(2x−x+3)2+(2x−1−1)2=0⇔x=1
\(x^2+2>0\Rightarrow4x+6=0\Leftrightarrow x=-\frac{3}{2}\)
\((4x+6)(x^{2}+2)=0 \)
\(\iff 4x+6=0 \) hoặc \(x^{2}+2=0\)
\(\iff 4x=6\) hoặc \(x^{2}\) =-2 (loại, vì \(x^{2}>0\) )
\(\iff\) x=\(\dfrac{3}{2}\)
x=3;-0,5;-2