Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Phương trình tương đương với \(\left(x^2-2x-2\right)\left(x^2+5x-2\right)=0\) hay \(x^2-2x-2=0\) hoặc \(x^2+5x-2=0\). Đến đây sử dụng Delta hoặc viết hai phương trình dưới dạng \(\left(x-1\right)^2=3,\left(2x+5\right)^2=33\) ta được bốn nghiệm là \(x=1\pm\sqrt{3},-\frac{5}{2}\pm\frac{\sqrt{33}}{2}\)
b. Phương trình tương đương với \(3\left(x+5\right)\left(x+6\right)\left(x+9\right)=8x+6\left(x+5\right)\left(x+6\right)\leftrightarrow3\left(x+5\right)\left(x+6\right)\left(x+9\right)=\left(x+9\right)\left(6x+20\right)\)
hay \(\left(x+9\right)\left(3x^2+27x+70\right)=0\leftrightarrow x=-9.\)
\(pt\Leftrightarrow x^4+5x^2\left(x+1\right)-6\left(x+1\right)^2=0\)
Đặt \(a=x^2;b=x+1\) ta có pt
\(a^2+5ab-6b^2=0\Leftrightarrow\left(a-b\right)\left(a+6b\right)=0\)
<=> a =b ; a = -6b
Giải từng trường hợp
Đấm vào chữ đúng giùm em ạ
Các đại ca đẹp zai,các cô nương xinh đẹp
Ai tick em là người như thế,100 người thôi.
Ming no mo ka djd
a)x5+x-1=0
<=>(x5+x4+x3+x2+x)-(x4+x3+x2+x+1)=0
<=>(x4+x3+x2+x+1)(x-1)=0
Do x4+x3+x2+x+1>0
=>x+1=0
<=>x=1
x4-4x3-9x2+36x = 0
⇔ x (x3 - 4x2 - 9x +36 ) = 0
⇔\(\begin{cases} x = 0 \\ x^3 -4x^2 -9x +36 = 0 (1) \end{cases}\)
(1) ⇔ x3 - 4x2 - 9x +36 = 0
x1 = -3 (Nhận)
x2 = 4 (Nhận)
Vậy S = {0;-3;4}
pt bậc 4 => có 4 nghiệm.
bấm máy tính tìm nghiệm đẹp (-2 và 3). Chia sơ đồ hoocne.
2 nghiệm đẹp (-2 và 3) được rồi, còn 2 nghiệm còn lại thì giải pt bậc 2 là ra.
kq: x=-2, x=3, x=1/3 , x=-1/2
Ta có \(6x^4-5x^3-38x^2-5x+6=0\Leftrightarrow6x^4+12x^3-17x^3-34x^2-4x^2-8x+3x+6=0\Leftrightarrow6x^3\left(x+2\right)-17x^2\left(x+2\right)-4x\left(x+2\right)+3\left(x+2\right)=0\Leftrightarrow\left(x+2\right)\left(6x^3-17x^2-4x+3\right)=0\Leftrightarrow\left(x+2\right)\left(6x^3-18x^2+x^2-3x-x+3\right)=0\Leftrightarrow\left(x+2\right)\left[6x^2\left(x-3\right)+x\left(x-3\right)-\left(x-3\right)\right]=0\Leftrightarrow\left(x+2\right)\left(x-3\right)\left(6x^2+x-1\right)=0\Leftrightarrow\left(x+2\right)\left(x-3\right)\left(6x^2-2x+3x-1\right)=0\Leftrightarrow\left(x+2\right)\left(x-3\right)\left[2x\left(3x-1\right)+\left(3x-1\right)\right]=0\Leftrightarrow\left(x+2\right)\left(x-3\right)\left(3x-1\right)\left(2x+1\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x+2=0\\x-3=0\\3x-1=0\\2x+1=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=-2\\x=3\\x=\dfrac{1}{3}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
Vậy S={\(-\dfrac{1}{2};-2;\dfrac{1}{3};3\)}
tôi cx ko chưa chắc chắn câu này nên chưa giải đc đâu
nha pn
\(x^6+6x^4-36x^3+6x^2+1=0\)
\(\Leftrightarrow\left(x^2-3x+1\right)\left(x^4+3x^3+14x^2+3x+1\right)=0\)
Dễ thấy \(x^4+3x^3+14x^2+3x+1>0\)
\(\Rightarrow x^2-3x+1=0\)
\(\Leftrightarrow x=\dfrac{3\pm\sqrt{5}}{2}\)