Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 4:
Giả sử điều cần chứng minh là đúng
\(\Rightarrow x=y\), thay vào điều kiện ở đề bài, ta được:
\(\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}=\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}\) (luôn đúng)
Vậy điều cần chứng minh là đúng
2) \(\sqrt{x^2-5x+4}+2\sqrt{x+5}=2\sqrt{x-4}+\sqrt{x^2+4x-5}\)
⇔ \(\sqrt{\left(x-4\right)\left(x-1\right)}-2\sqrt{x-4}+2\sqrt{x+5}-\sqrt{\left(x+5\right)\left(x-1\right)}=0\)
⇔ \(\sqrt{x-4}.\left(\sqrt{x-1}-2\right)-\sqrt{x+5}\left(\sqrt{x-1}-2\right)=0\)
⇔ \(\left(\sqrt{x-4}-\sqrt{x+5}\right)\left(\sqrt{x-1}-2\right)=0\)
⇔ \(\left[{}\begin{matrix}\sqrt{x-4}-\sqrt{x+5}=0\\\sqrt{x-1}-2=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}\sqrt{x-4}=\sqrt{x+5}\\\sqrt{x-1}=2\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x\in\varnothing\\x=5\end{matrix}\right.\)
⇔ x = 5
Vậy S = {5}
Điều kiện: \(x\ge-1\)
\(x^3+\left(3x^2-4x-4\right)\sqrt{x+1}=0\)
\(\Leftrightarrow x^3+3x^2\sqrt{x+1}-4\sqrt{\left(x+1\right)^3}=0\)
Dễ thấy x = - 1 không phải là nghiệm của phương trình. Ta có
\(\frac{x^3}{\sqrt{\left(x+1\right)^3}}+\frac{3x^2}{\sqrt{\left(x+1\right)^2}}-4=0\)
Đặt \(\frac{x}{\sqrt{x+1}}=a\) thì ta được
\(a^3+3a-4=0\)
\(\Leftrightarrow\left(a-1\right)\left(a^2+2\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=1\\a=-2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}\frac{x}{\sqrt{x+1}}=1\\\frac{x}{\sqrt{x+1}}=-2\end{cases}}\)
Tới đây thì đơn giản rồi nhé.
\(x^3+\left(3x^2-4x-4\right)\sqrt{x+1}=0\)
Đk:\(x\ge1\)
\(Pt\Leftrightarrow\left(x-\sqrt{x+1}\right)^3-3\sqrt{x+1}\left(x+1+x\sqrt{x+1}-2x^2\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{x-1}\right)^3-3\sqrt{x+1}\left(\sqrt{x+1}+2x\right)\left(\sqrt{x+1}-x\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{x+1}\right)\left(x^2+4x\sqrt{x+1}+4x+4\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{x+1}\right)\left(x+2\sqrt{x+1}\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-\sqrt{x+1}=0\\\left(x+2\sqrt{x+1}\right)^2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x-\sqrt{x+1}=0\\x+2\sqrt{x+1}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{x+1}\\x=-2\sqrt{x+1}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x^2=x+1\\x^2=4\left(x+1\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-x-1=0\\x^2-4x-4=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=2-2\sqrt{2}\\x=\frac{1+\sqrt{5}}{2}\end{cases}}\) (thỏa mãn)
1) \(\sqrt[]{9\left(x-1\right)}=21\)
\(\Leftrightarrow9\left(x-1\right)=21^2\)
\(\Leftrightarrow9\left(x-1\right)=441\)
\(\Leftrightarrow x-1=49\Leftrightarrow x=50\)
2) \(\sqrt[]{1-x}+\sqrt[]{4-4x}-\dfrac{1}{3}\sqrt[]{16-16x}+5=0\)
\(\Leftrightarrow\sqrt[]{1-x}+\sqrt[]{4\left(1-x\right)}-\dfrac{1}{3}\sqrt[]{16\left(1-x\right)}+5=0\)
\(\)\(\Leftrightarrow\sqrt[]{1-x}+2\sqrt[]{1-x}-\dfrac{4}{3}\sqrt[]{1-x}+5=0\)
\(\Leftrightarrow\sqrt[]{1-x}\left(1+3-\dfrac{4}{3}\right)+5=0\)
\(\Leftrightarrow\sqrt[]{1-x}.\dfrac{8}{3}=-5\)
\(\Leftrightarrow\sqrt[]{1-x}=-\dfrac{15}{8}\)
mà \(\sqrt[]{1-x}\ge0\)
\(\Leftrightarrow pt.vô.nghiệm\)
3) \(\sqrt[]{2x}-\sqrt[]{50}=0\)
\(\Leftrightarrow\sqrt[]{2x}=\sqrt[]{50}\)
\(\Leftrightarrow2x=50\Leftrightarrow x=25\)
1) \(\sqrt{9\left(x-1\right)}=21\) (ĐK: \(x\ge1\))
\(\Leftrightarrow3\sqrt{x-1}=21\)
\(\Leftrightarrow\sqrt{x-1}=7\)
\(\Leftrightarrow x-1=49\)
\(\Leftrightarrow x=49+1\)
\(\Leftrightarrow x=50\left(tm\right)\)
2) \(\sqrt{1-x}+\sqrt{4-4x}-\dfrac{1}{3}\sqrt{16-16x}+5=0\) (ĐK: \(x\le1\))
\(\Leftrightarrow\sqrt{1-x}+2\sqrt{1-x}-\dfrac{4}{3}\sqrt{1-x}+5=0\)
\(\Leftrightarrow\dfrac{5}{3}\sqrt{1-x}+5=0\)
\(\Leftrightarrow\dfrac{5}{3}\sqrt{1-x}=-5\) (vô lý)
Phương trình vô nghiệm
3) \(\sqrt{2x}-\sqrt{50}=0\) (ĐK: \(x\ge0\))
\(\Leftrightarrow\sqrt{2x}=\sqrt{50}\)
\(\Leftrightarrow2x=50\)
\(\Leftrightarrow x=\dfrac{50}{2}\)
\(\Leftrightarrow x=25\left(tm\right)\)
4) \(\sqrt{4x^2+4x+1}=6\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)
\(\Leftrightarrow\left|2x+1\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\left(ĐK:x\ge-\dfrac{1}{2}\right)\\2x+1=-6\left(ĐK:x< -\dfrac{1}{2}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=-7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\left(tm\right)\\x=-\dfrac{7}{2}\left(tm\right)\end{matrix}\right.\)
5) \(\sqrt{\left(x-3\right)^2}=3-x\)
\(\Leftrightarrow\left|x-3\right|=3-x\)
\(\Leftrightarrow x-3=3-x\)
\(\Leftrightarrow x+x=3+3\)
\(\Leftrightarrow x=\dfrac{6}{2}\)
\(\Leftrightarrow x=3\)
Bài 1: ĐKXĐ: $2\leq x\leq 4$
PT $\Leftrightarrow (\sqrt{x-2}+\sqrt{4-x})^2=2$
$\Leftrightarrow 2+2\sqrt{(x-2)(4-x)}=2$
$\Leftrightarrow (x-2)(4-x)=0$
$\Leftrightarrow x-2=0$ hoặc $4-x=0$
$\Leftrightarrow x=2$ hoặc $x=4$ (tm)
Bài 2:
PT $\Leftrightarrow 4x^3(x-1)-3x^2(x-1)+6x(x-1)-4(x-1)=0$
$\Leftrightarrow (x-1)(4x^3-3x^2+6x-4)=0$
$\Leftrightarrow x=1$ hoặc $4x^3-3x^2+6x-4=0$
Với $4x^3-3x^2+6x-4=0(*)$
Đặt $x=t+\frac{1}{4}$ thì pt $(*)$ trở thành:
$4t^3+\frac{21}{4}t-\frac{21}{8}=0$
Đặt $t=m-\frac{7}{16m}$ thì pt trở thành:
$4m^3-\frac{343}{1024m^3}-\frac{21}{8}=0$
$\Leftrightarrow 4096m^6-2688m^3-343=0$
Coi đây là pt bậc 2 ẩn $m^3$ và giải ta thu được \(m=\frac{\sqrt[3]{49}}{4}\) hoặc \(m=\frac{-\sqrt[3]{7}}{4}\)
Khi đó ta thu được \(x=\frac{1}{4}(1-\sqrt[3]{7}+\sqrt[3]{49})\)
a)Đk:\(x\ge\frac{1}{2}\)
\(pt\Leftrightarrow4x^2-12x+4+4\sqrt{2x-1}=0\)
\(\Leftrightarrow\left(2x-1\right)^2-4\left(2x-1\right)-1+4\sqrt{2x-1}=0\)
Đặt \(t=\sqrt{2x-1}>0\Rightarrow\hept{\begin{cases}t^2=2x-1\\t^4=\left(2x-1\right)^2\end{cases}}\)
\(t^4-4t^2+4t-1=0\)
\(\Leftrightarrow\left(t-1\right)^2\left(t^2+2t-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}t-1=0\\t^2+2t-1=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}t=1\\t=\sqrt{2}-1\end{cases}\left(t>0\right)}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=2-\sqrt{2}\end{cases}}\) là nghiệm thỏa pt
Bài 1:
Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:
\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)
\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc
\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)và\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)
Câu 3: ĐK: \(x\ge0\)
Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)
Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)
\(\Rightarrow2x-4\sqrt{x-1}=0\)
Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)
\(DK:x\ge-\frac{1}{3}\)
\(\Leftrightarrow\frac{2x-1}{\sqrt{3x+1}+\sqrt{x+2}}\left(\sqrt{3x^2+7x+2}+4\right)-2\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(\frac{\sqrt{3x^2+7x+2}+4}{\sqrt{3x+1}+\sqrt{x+2}}-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\left(1\right)\\\frac{\sqrt{3x^2+7x+2}+4}{\sqrt{3x+1}+\sqrt{x+2}}=2\left(2\right)\end{cases}}\)
Xet PT(2)
Dat \(\hept{\begin{cases}\sqrt{3x+1}=a\\\sqrt{x+2}=b\end{cases}\left(a,b\ge0\right)}\)
PT(2)\(\Leftrightarrow\frac{ab+4}{a+b}=2\)
\(\Leftrightarrow2a+2b-ab-4=0\)
\(\Leftrightarrow\left(a+2\right)\left(2-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=-2\left(3\right)\\b=2\left(4\right)\end{cases}}\)
Xet PT(3)
Ta co:\(a\ge0\)
Nen PT vo nghiem
Xet PT (4)
\(\Leftrightarrow\sqrt{x+2}=2\)
\(\Leftrightarrow x+2=4\)
\(\Leftrightarrow x=2\)
Vay PT co 2 nghiem la \(x_1=\frac{1}{2};x_2=2\)
ĐKXĐ : x \(\ge-1\)
\(x^3+\left(3x^2-4x-4\right)\sqrt{x+1}=0\)
<=> \(x^3+3x^2\sqrt{x+1}-4\left(x+1\right)\sqrt{x+1}=0\)
<=> \(x^3+3x^2\sqrt{x+1}-4\left(\sqrt{x+1}\right)^3=0\)
<=> \(\left(x^3-x^2\sqrt{x+1}\right)+4\left[x^2\sqrt{x+1}-\left(\sqrt{x+1}\right)^3\right]=0\)
\(\Leftrightarrow x^2\left(x-\sqrt{x+1}\right)+4\sqrt{x+1}\left[x^2-\left(\sqrt{x+1}\right)^2\right]=0\)
<=> \(x^2\left(x-\sqrt{x+1}\right)+4\sqrt{x+1}\left(x-\sqrt{x+1}\right)\left(x+\sqrt{x+1}\right)=0\)
<=> \(\left(x-\sqrt{x+1}\right)\left(x^2+4x\sqrt{x+1}+4x+4\right)=0\)
<=> \(\left(x-\sqrt{x+1}\right)\left(x+2\sqrt{x+1}\right)^2=0\)
<=> \(\left[{}\begin{matrix}x=\sqrt{x+1}\left(1\right)\\x=-2\sqrt{x+1}\left(2\right)\end{matrix}\right.\)
Giải (1) ta có \(x=\sqrt{x+1}\Leftrightarrow\left\{{}\begin{matrix}x^2=x+1\\x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=\dfrac{\sqrt{5}+1}{2}\\x=\dfrac{1-\sqrt{5}}{2}\left(\text{loại}\right)\end{matrix}\right.\\x\ge0\end{matrix}\right.\)
\(\Leftrightarrow x=\dfrac{\sqrt{5}+1}{2}\)
Giải (2) ta có : \(x=-2\sqrt{x+1}\Leftrightarrow\left\{{}\begin{matrix}x^2-4x-4=0\\x\ge-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm\sqrt{8}+2\\x\ge-1\end{matrix}\right.\Leftrightarrow x=\sqrt{8}+2\)
\(x^3+\left(3x^2-4x-4\right)\sqrt{x+1}=0\left(đk:x\ge-1\right)\)
\(\Leftrightarrow x^3+3x^2\sqrt{x+1}-4\left(x+1\right)\sqrt{x+1}=0\)
\(\Leftrightarrow x^3+3x^2\sqrt{x+1}-4\sqrt{x+1}^3=0\left(1\right)\)
\(TH:x=-1\Rightarrow\left(1\right)\Leftrightarrow-1=0\left(ktm\right)\)
\(TH:x>-1\Rightarrow\left(1\right)\Leftrightarrow\left(\dfrac{x}{\sqrt{x+1}}\right)^3+3\left(\dfrac{x}{\sqrt{x+1}}\right)^2-4=0\)
\(đặt:\dfrac{x}{\sqrt{x+1}}=a\Rightarrow a^3+3a^2-4=0\Leftrightarrow\left(a+2\right)^2\left(a-1\right)=0\Leftrightarrow\left[{}\begin{matrix}a=1=\dfrac{x}{\sqrt{x+1}}\Leftrightarrow\sqrt{x+1}=x\left(2\right)\\a=-2=\dfrac{x}{\sqrt{x+1}}\Leftrightarrow2\sqrt{x+1}=-x\left(3\right)\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left[{}\begin{matrix}x=\dfrac{1+\sqrt{5}}{2}\\x=\dfrac{1-\sqrt{5}}{2}\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow x=\dfrac{1+\sqrt{5}}{2}\)
\(\left(3\right)\Leftrightarrow\left\{{}\begin{matrix}-1< x\le0\\4\left(x+1\right)=x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1< x\le0\\\left[{}\begin{matrix}x=2+2\sqrt{2}\\x=2-2\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow x=2-2\sqrt{2}\)