K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2019

x -3 3 x+3 x-3 VT 0 0 -x-3 3-x -2x x+3 3-x 6 x+3 x-3 2x

Từ bảng trên,ta có;

Với x < -3 thì \(-2x=7-x\Leftrightarrow x=-7\left(TM\right)\)

Với \(-3\le x< 3\Rightarrow7-x=6\Leftrightarrow x=1\left(TM\right)\)

Với \(x\ge3\Rightarrow2x=7-x\Leftrightarrow x=\frac{7}{3}\left(KTM\right)\)

Vậy...

15 tháng 4 2019

Làm biếng lập bảng bảng xét dấu nên thử cách này bạn tự check nhé! Khi nào rảnh mình sẽ làm cách kia (tỉ lệ đúng cao hơn)

Do vế trái không âm nên vế phải không âm.Suy ra \(x\le7\)

Với x = 7 thì 14 = 0 suy ra không thỏa mãn.

Với \(3\le x< 7\) thì \(x+3+x-3=7-x\Leftrightarrow3x=7\Leftrightarrow x=\frac{7}{3}\left(KTM\right)\)

Với \(-3\le x< 3\) thì \(x+3+3-x=7-x\Leftrightarrow x=1\left(TM\right)\)

Với \(x< -3\) thì \(-x-3+3-x=7-x\Leftrightarrow x=-7\left(TM\right)\)

Vậy tập hợp nghiệm của phương trình là: \(S=\left\{1;-7\right\}\)

25 tháng 4 2019

Bạn oi

25 tháng 4 2019

Sao bn?

7 tháng 2 2018

ĐKXĐ : \(\hept{\begin{cases}x^2+x-6\ne0\\x^2+4x+3\ne0\\2x-1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x+3\right)\left(x-2\right)\ne0\\\left(x+1\right)\left(x+3\right)\ne0\\x\ne\frac{1}{2}\end{cases}\Rightarrow\hept{\begin{cases}x\ne2;-3\\x\ne-1;-3\\x\ne\frac{1}{2}\end{cases}}}}\)

TXĐ : \(x\ne\left\{-3;-1;\frac{1}{2};2\right\}\)

\(pt\Leftrightarrow\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{2}{\left(x+1\right)\left(x+3\right)}=\frac{-3}{2x-1}\)

\(\Leftrightarrow\frac{5\left(x+1\right)-2\left(x-2\right)}{\left(x-2\right)\left(x+1\right)\left(x+3\right)}=\frac{-3}{2x-1}\)

\(\Leftrightarrow\frac{3x+9}{\left(x-2\right)\left(x+1\right)\left(x+3\right)}=\frac{-3}{2x-1}\)

\(\Leftrightarrow\frac{3}{\left(x-2\right)\left(x+1\right)}=\frac{-3}{2x-1}\)

\(\Leftrightarrow\frac{1}{x^2-x-2}=\frac{1}{1-2x}\)

\(\Leftrightarrow x^2-x-2-1+2x=0\)

\(\Leftrightarrow x^2+x-3=0\)

\(\Leftrightarrow\left(x^2+2.\frac{1}{2}.x+\frac{1}{4}\right)-\frac{13}{4}=0\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2-\left(\frac{\sqrt{13}}{2}\right)^2=0\)

\(\Leftrightarrow\left(x+\frac{1-\sqrt{13}}{2}\right)\left(x+\frac{1+\sqrt{13}}{2}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{\sqrt{13}-1}{2}\\x=\frac{-\sqrt{13}-1}{2}\end{cases}}\)

7 tháng 2 2018

\(\frac{5}{x^2+x-6}-\frac{2}{x^2+4+3}=-\frac{3}{2x-1}\)

<=> \(\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{2}{\left(x+1\right)\left(x+3\right)}=-\frac{3}{2x-1}\)

<=> \(\frac{5\left(x+1\right)-2\left(x-2\right)}{\left(x-2\right)\left(x+3\right)}=-\frac{3}{2x-1}\)

<=> \(\frac{5x+5-2x+4}{\left(x-2\right)\left(x+3\right)}=-\frac{3}{2x-1}\)

<=> \(\frac{3x+9}{\left(x-2\right)\left(x+3\right)}=-\frac{3}{2x-1}\)

<=> \(\frac{3\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}=-\frac{3}{2x-1}\)

<=> \(\frac{1}{x-2}=-\frac{1}{2x-1}\)

<=> x-2=1-2x <=> 3x=3

=> x=1

Đáp số: x=1

26 tháng 1 2021

\(\left(8x+5\right)\left(8x+7\right)\left(8x+6\right)^2=72\)

Đặt \(8x+5=t\left(t\ge0\right)\)

\(t\left(t+2\right)\left(t+1\right)^2-72=0\)

\(\Leftrightarrow t\left(t+1\right)\left(t+2\right)\left(t+1\right)-72=0\)

\(\Leftrightarrow\left(t^2+t\right)\left(t^2+3t+2\right)-72=0\)

\(\Leftrightarrow t^4+3t^3+2t^2+t^3+3t^2+2t-72=0\)

\(\Leftrightarrow t^4+4t^3+5t^2+2t-72=0\)

\(\Leftrightarrow\left(t^2+2t+9\ne0\right)\left(t+4\right)\left(t-2\right)=0\Leftrightarrow t=-4;2\)

hay \(8x+5=-4\Leftrightarrow x=-\frac{9}{8}\)( trường hợp 1 ) 

\(8x+5=2\Leftrightarrow x=-\frac{3}{8}\)( trưởng hợp 2 ) 

Vậy tập nghiệm của phương trình là S = { -9/8 ; -3/8 }

26 tháng 1 2021

\(\left(8x+5\right)\cdot\left(8x+7\right)\cdot\left(8x+6\right)^2=72\)

Đặt \(t=8x+6\)

\(Pt\Leftrightarrow\left(t-1\right)\left(t+1\right)t^2-72=0\)

\(\Leftrightarrow\left(t^2-1\right)t^2-72=0\Leftrightarrow t^4-t^2-72=0\)

\(\Leftrightarrow\left(t^2-9\right)\left(t^2+8\right)=0\Leftrightarrow\orbr{\begin{cases}t^2=9\\t^2=-8\end{cases}\Leftrightarrow\orbr{\begin{cases}t=3\\t=-3\end{cases}}}\)

\(\Leftrightarrow\orbr{\begin{cases}8x+6=3\\8x+6=-3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{3}{8}\\x=-\frac{9}{8}\end{cases}}}\)

Vậy....

5 tháng 7 2020

Bài làm 

\(2x.\left(x-3\right)=x-3\)

\(2x.\left(x-3\right)-\left(x-3\right)=0\)

\(\left(2x-1\right).\left(x-3\right)=0\)

\(\orbr{\begin{cases}2x-1=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=3\end{cases}}}\)

Vậy phương trình có 2 nghiêm \(x\in\left\{\frac{1}{2};3\right\}\)

5 tháng 7 2020

1/2 và 3 nha chế 

7 tháng 2 2018

\(\frac{1}{x^2-2x+2}+\frac{2}{x^2-2x+3}=\frac{6}{x^2-2x+4}\)

Đặt a = x2 - 2x + 3. Khi đó phương trình trở thành:

\(\frac{1}{a+1}+\frac{2}{a}=\frac{6}{a-1}\) \(ĐK:\)\(\hept{\begin{cases}a\ne0\\a\ne1\\a\ne-1\end{cases}}\)

\(\Leftrightarrow\)\(\frac{a\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}+\frac{2\left(a-1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)}=\frac{6a\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)}\)

\(\Rightarrow\)\(a^2-a+2a^2-2-6a^2-6a=0\)

\(\Leftrightarrow\)\(-3a^2-7a-2=0\)

\(\Leftrightarrow\)\(\left(a-6\right)\left(a-1\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}a-6=0\\a-1=0\end{cases}}\)

\(\Rightarrow\)\(\orbr{\begin{cases}x^2-2x-3=0\\x^2-2x+2=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-3\\x=1\end{cases}\left(x^2-2x+2\ne0\right)}\)

Vậy \(S=\left\{-3;1\right\}\)

14 tháng 4 2018

\(a,x\left(x-5\right)+6< 0\Leftrightarrow\left(x+6\right)\left(x-5\right)< 0\)

\(\orbr{\begin{cases}x+6< 0\\x-5< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x< -6\\x< 5\end{cases}}}\)

\(b,x^2+\left(x-2\right)\left(x+2\right)>2x\left(x-2\right)\)

\(\Leftrightarrow x^2+x^2-4>2x^2-4x\Leftrightarrow-4>-4x\)

\(\Leftrightarrow-4x< -4\Rightarrow x>1\)

\(c,\left(x-3\right)\left(x-3\right)+\left(x+5\right)\left(x+5\right)< 2\left(x-3\left(x+5\right)\right)\)

\(\Leftrightarrow x^2-6x+9+x^2+10x+25< 2x^2+4x-30\)

\(\Leftrightarrow2x^2-2x^2+4x-4x< -30-34\)

\(\Leftrightarrow0x< -64\)

bất phương trình vô nghiệm

8 tháng 2 2019

Bài 1 :

\(A=\left(x-1\right)\left(x-2\right)\left(x+7\right)\left(x+8\right)+8\)

\(A=\left[\left(x-1\right)\left(x+7\right)\right]\left[\left(x-2\right)\left(x+8\right)\right]+8\)

\(A=\left(x^2+6x-7\right)\left(x^2+6x-16\right)+8\)

Đặt \(a=x^2+6x-7\)

\(A=a\left(a-9\right)+8\)

\(A=a^2-9a+8\)

\(A=a^2-8a-a+8\)

\(A=a\left(a-8\right)-\left(a-8\right)\)

\(A=\left(a-8\right)\left(a-1\right)\)

Thay a vào là xong bạn :)

cảm ớn phương nhiều