Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : \(\hept{\begin{cases}x^2+x-6\ne0\\x^2+4x+3\ne0\\2x-1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x+3\right)\left(x-2\right)\ne0\\\left(x+1\right)\left(x+3\right)\ne0\\x\ne\frac{1}{2}\end{cases}\Rightarrow\hept{\begin{cases}x\ne2;-3\\x\ne-1;-3\\x\ne\frac{1}{2}\end{cases}}}}\)
TXĐ : \(x\ne\left\{-3;-1;\frac{1}{2};2\right\}\)
\(pt\Leftrightarrow\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{2}{\left(x+1\right)\left(x+3\right)}=\frac{-3}{2x-1}\)
\(\Leftrightarrow\frac{5\left(x+1\right)-2\left(x-2\right)}{\left(x-2\right)\left(x+1\right)\left(x+3\right)}=\frac{-3}{2x-1}\)
\(\Leftrightarrow\frac{3x+9}{\left(x-2\right)\left(x+1\right)\left(x+3\right)}=\frac{-3}{2x-1}\)
\(\Leftrightarrow\frac{3}{\left(x-2\right)\left(x+1\right)}=\frac{-3}{2x-1}\)
\(\Leftrightarrow\frac{1}{x^2-x-2}=\frac{1}{1-2x}\)
\(\Leftrightarrow x^2-x-2-1+2x=0\)
\(\Leftrightarrow x^2+x-3=0\)
\(\Leftrightarrow\left(x^2+2.\frac{1}{2}.x+\frac{1}{4}\right)-\frac{13}{4}=0\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2-\left(\frac{\sqrt{13}}{2}\right)^2=0\)
\(\Leftrightarrow\left(x+\frac{1-\sqrt{13}}{2}\right)\left(x+\frac{1+\sqrt{13}}{2}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{\sqrt{13}-1}{2}\\x=\frac{-\sqrt{13}-1}{2}\end{cases}}\)
\(\frac{5}{x^2+x-6}-\frac{2}{x^2+4+3}=-\frac{3}{2x-1}\)
<=> \(\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{2}{\left(x+1\right)\left(x+3\right)}=-\frac{3}{2x-1}\)
<=> \(\frac{5\left(x+1\right)-2\left(x-2\right)}{\left(x-2\right)\left(x+3\right)}=-\frac{3}{2x-1}\)
<=> \(\frac{5x+5-2x+4}{\left(x-2\right)\left(x+3\right)}=-\frac{3}{2x-1}\)
<=> \(\frac{3x+9}{\left(x-2\right)\left(x+3\right)}=-\frac{3}{2x-1}\)
<=> \(\frac{3\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}=-\frac{3}{2x-1}\)
<=> \(\frac{1}{x-2}=-\frac{1}{2x-1}\)
<=> x-2=1-2x <=> 3x=3
=> x=1
Đáp số: x=1
\(\left(8x+5\right)\left(8x+7\right)\left(8x+6\right)^2=72\)
Đặt \(8x+5=t\left(t\ge0\right)\)
\(t\left(t+2\right)\left(t+1\right)^2-72=0\)
\(\Leftrightarrow t\left(t+1\right)\left(t+2\right)\left(t+1\right)-72=0\)
\(\Leftrightarrow\left(t^2+t\right)\left(t^2+3t+2\right)-72=0\)
\(\Leftrightarrow t^4+3t^3+2t^2+t^3+3t^2+2t-72=0\)
\(\Leftrightarrow t^4+4t^3+5t^2+2t-72=0\)
\(\Leftrightarrow\left(t^2+2t+9\ne0\right)\left(t+4\right)\left(t-2\right)=0\Leftrightarrow t=-4;2\)
hay \(8x+5=-4\Leftrightarrow x=-\frac{9}{8}\)( trường hợp 1 )
\(8x+5=2\Leftrightarrow x=-\frac{3}{8}\)( trưởng hợp 2 )
Vậy tập nghiệm của phương trình là S = { -9/8 ; -3/8 }
\(\left(8x+5\right)\cdot\left(8x+7\right)\cdot\left(8x+6\right)^2=72\)
Đặt \(t=8x+6\)
\(Pt\Leftrightarrow\left(t-1\right)\left(t+1\right)t^2-72=0\)
\(\Leftrightarrow\left(t^2-1\right)t^2-72=0\Leftrightarrow t^4-t^2-72=0\)
\(\Leftrightarrow\left(t^2-9\right)\left(t^2+8\right)=0\Leftrightarrow\orbr{\begin{cases}t^2=9\\t^2=-8\end{cases}\Leftrightarrow\orbr{\begin{cases}t=3\\t=-3\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}8x+6=3\\8x+6=-3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{3}{8}\\x=-\frac{9}{8}\end{cases}}}\)
Vậy....
Bài làm
\(2x.\left(x-3\right)=x-3\)
\(2x.\left(x-3\right)-\left(x-3\right)=0\)
\(\left(2x-1\right).\left(x-3\right)=0\)
\(\orbr{\begin{cases}2x-1=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=3\end{cases}}}\)
Vậy phương trình có 2 nghiêm \(x\in\left\{\frac{1}{2};3\right\}\)
\(\frac{1}{x^2-2x+2}+\frac{2}{x^2-2x+3}=\frac{6}{x^2-2x+4}\)
Đặt a = x2 - 2x + 3. Khi đó phương trình trở thành:
\(\frac{1}{a+1}+\frac{2}{a}=\frac{6}{a-1}\) \(ĐK:\)\(\hept{\begin{cases}a\ne0\\a\ne1\\a\ne-1\end{cases}}\)
\(\Leftrightarrow\)\(\frac{a\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}+\frac{2\left(a-1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)}=\frac{6a\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)}\)
\(\Rightarrow\)\(a^2-a+2a^2-2-6a^2-6a=0\)
\(\Leftrightarrow\)\(-3a^2-7a-2=0\)
\(\Leftrightarrow\)\(\left(a-6\right)\left(a-1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}a-6=0\\a-1=0\end{cases}}\)
\(\Rightarrow\)\(\orbr{\begin{cases}x^2-2x-3=0\\x^2-2x+2=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-3\\x=1\end{cases}\left(x^2-2x+2\ne0\right)}\)
Vậy \(S=\left\{-3;1\right\}\)
Từ bảng trên,ta có;
Với x < -3 thì \(-2x=7-x\Leftrightarrow x=-7\left(TM\right)\)
Với \(-3\le x< 3\Rightarrow7-x=6\Leftrightarrow x=1\left(TM\right)\)
Với \(x\ge3\Rightarrow2x=7-x\Leftrightarrow x=\frac{7}{3}\left(KTM\right)\)
Vậy...
Làm biếng lập bảng bảng xét dấu nên thử cách này bạn tự check nhé! Khi nào rảnh mình sẽ làm cách kia (tỉ lệ đúng cao hơn)
Do vế trái không âm nên vế phải không âm.Suy ra \(x\le7\)
Với x = 7 thì 14 = 0 suy ra không thỏa mãn.
Với \(3\le x< 7\) thì \(x+3+x-3=7-x\Leftrightarrow3x=7\Leftrightarrow x=\frac{7}{3}\left(KTM\right)\)
Với \(-3\le x< 3\) thì \(x+3+3-x=7-x\Leftrightarrow x=1\left(TM\right)\)
Với \(x< -3\) thì \(-x-3+3-x=7-x\Leftrightarrow x=-7\left(TM\right)\)
Vậy tập hợp nghiệm của phương trình là: \(S=\left\{1;-7\right\}\)