K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2021

\(x^2-x+8=4\sqrt{x+3}\)đk : x >= -3

\(\Leftrightarrow x\left(x-1\right)+8-4\sqrt{x+3}=0\)

Đặt \(\sqrt{x+3}=t;\Rightarrow x+3=t^2\Leftrightarrow x=t^2-3;x-1=t^2-4\)

khi đó : \(\left(t^2-3\right)\left(t^2-4\right)+8-4t=0\)

\(\Leftrightarrow t^4-7t^2+20-4t=0\)

\(\Leftrightarrow\left(t-2\right)\left(t^3+2t^2-3t-10\right)=0\)

\(\Leftrightarrow t=2;t=\frac{-4+2i}{2}\left(loại\right);\frac{-4-2i}{2}\left(loại\right)\)

Theo cách đặt \(\sqrt{x+3}=2\Leftrightarrow x+3=4\Leftrightarrow x=1\)

8 tháng 11 2021

xin vui lòng giúp em, em rất rất gấp!!

24 tháng 4 2017

Câu 1:
png.latex?\sqrt{2+\sqrt{3}}^{x}+\sqrt{2-\sqrt{3}}^{x}=2^{x} 
png.latex?\Leftrightarrow%20\sqrt{\frac{2+\sqrt{3}}{4}}^{x}%20+\sqrt{\frac{2-\sqrt{3}}{4}}^{x}%20=1 
Dễ thấy phương trình có x=2 là 1 nghiệm.
Mặt khác ta có: vế trái luôn nghịch biến do
png.latex?y%27=\sqrt{\frac{2+\sqrt{3}}{4}}^{x}ln(\sqrt{\frac{2+\sqrt{3}}{4}})%20+\sqrt{\frac{2-\sqrt{3}}{4}}^{x}ln(\sqrt{\frac{2-\sqrt{3}}{4}})%20%3C0%20\forall%20x 
Vậy phương trình có nghiệm duy nhất x=2

Câu 2:
png.latex?2^{x}+2^{-x}+2=4x-x^2%20\Leftrightarrow%202^{x}+\frac{1}{2^{x}}+2=4x-x^2 
Áp dụng bất đẳng thức Côsi ta có:
png.latex?2^{x}+\frac{1}{2^{x}}%20\geq%202%20\Rightarrow%202^{x}+\frac{1}{2^{x}}+2%20\geq%204 
png.latex?\Rightarrow%204x-x^{2}\geq%204%20\Leftrightarrow%20-(x-2)^{2}\geq%200 
Dễ thấy chỉ xảy ra khi png.latex?x-2=0%20\Leftrightarrow%20x=2 
Mặt khác khi thay x=2 vào vế trái được VT bằng png.latex?%202^{2}+\frac{1}{2^{2}}+2%20%3E4 
Vậy kết luận phương trình đã cho vô nghiệm.

Câu 3:
Tương tự phương pháp như câu 2 ta có:
png.latex?2cos{\frac{x^{2}+x}{6}}=2^{x}+2^{-x} 
png.latex?\Leftrightarrow%201+cos{\frac{x^{2}+x}{3}}=2^{x}+\frac{1}{2^{x}} 
Vế phải png.latex?2^{x}+\frac{1}{2^{x}}%20\geq%202%20\Rightarrow%201+cos{\frac{x^{2}+x}{3}}\geq%202 
png.latex?\Leftrightarrow%20cos{\frac{x^{2}+x}{3}}%20\geq%201 mà png.latex?-1%20\leq%20cos{\frac{x^{2}+x}{3}}%20\leq%201 
Vậy nên chỉ có thể xảy ra khi png.latex?cos{\frac{x^{2}+x}{3}}=1(1) 
Mặt khác ta có để png.latex?2^{x}+\frac{1}{2^{x}}%20=2%20\Leftrightarrow%20x=0 
Thay x=0 vào (1) được png.latex?cos{\frac{0}{3}}=1 (Thoả mãn)
Vậy phương trình đã cho có nghiệm x=0

Câu 4
png.latex?\frac{8^{x}+2^{x}}{4^{x}-2}=5 
Điều kiện là mẫu khác 0 hay x khác png.latex?\frac{1}{2} 
Với điều kiện trên ta có:
png.latex?8^{x}+2^{x}=5(4^{x}-2)%20\Leftrightarrow%20(2^{x})^{3}-5(2^{x})^{2}+2^{x}+10=0 
Bạn đặt png.latex?t=2^{x}(t%3E0) ta được phương trình sau
png.latex?t^{3}-5t^{2}+t+10=0 
Giải phương trình được png.latex?t=2,t=\frac{3+\sqrt{29}}{2} ,png.latex?t=\frac{3-\sqrt{29}}{2} (loại vì t>0)
Vậy cuối cùng giải ra nghiệm của phương trình là:
png.latex?x=1 và png.latex?x=log_{2}%20\frac{3+\sqrt{29}}{2}
 
 

\(x^2+x^4-8^2+16\)

\(=x^{2+4}-8^2+4^2\)

\(=x^6-64+16\)

\(=x^2-48\)

\(=\left(x-\sqrt{48}\right)\left(x+\sqrt{48}\right)\)

ĐẶT x-1=a  , x+3=b   (a,b cùng dấu)

\(PT\Leftrightarrow ab+2a\sqrt{\frac{b}{a}}=8\)

\(\Leftrightarrow2a\sqrt{\frac{b}{a}}=8-ab\)

\(\Leftrightarrow4a^2\frac{b}{a}=64-16ab+a^2b^2\)

\(\Leftrightarrow a^2b^2-20ab+64=0\)

\(\Leftrightarrow\left(ab-10\right)^2-36=0\)

\(\Leftrightarrow\left(ab-4\right)\left(ab-16\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}ab=4\\ab=16\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)\left(x+3\right)=4\\\left(x-1\right)\left(x+3\right)=16\end{cases}}\)

Đến đây đơn giản rồi bn tự giải nhé

26 tháng 7 2019

ĐK:....\(\frac{x+3}{x-1}\ge0\)

<=> \(\left(x-1\right)\left(x+3\right)+2\sqrt{\left(x-1\right)\left(x+3\right)}+1=9\)

<=> \(\left(\sqrt{\left(x-1\right)\left(x+3\right)}+1\right)^2=9\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{\left(x-1\right)\left(x+3\right)}=2\\\sqrt{\left(x-1\right)\left(x+3\right)}=-4\left(loai\right)\end{cases}}\)

\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=4\)

Em tự làm tiếp nhé

14 tháng 9 2017

a) căn(2x+5) - căn(3-x) = x2 -5x + 8 
Điều kiện : \(-\frac{5}{2}\Leftarrow x\Leftarrow3\)
căn(2x+5) - căn(3-x) = x^2-5x+8 
\(\Leftrightarrow\)[căn(2x+5)-3]-[căn(3-x)-1]=x-5x+6 
nhân liên hợp 
\(\Leftrightarrow\)(2x+5-9) / [căn(2x+5)+3] -(3-x-1) / [căn (3-x)+1]=(x-2)(x-3) 
\(\Leftrightarrow\)(2x-4) / [căn (2x+5)+3] -(2-x) /  [ căn (3-x)+1]-(x-2)(x-3)=0 
\(\Leftrightarrow\)(x-2).M=0 
\(\Leftrightarrow\)x=2 hoặc M=0 
M=2 / [căn(2x+5)+3]+1 / [căn(3-x)+1]-x+3 

2/[can(2x+5)+3]+1/[can(3-x)+1]>0 voi moi x 
voi -5/2<=x<=3 <->3-x thuoc[0;11/2] 
nen M>0 
vay x=2 
b/ 2+ căn(3-8x) = 6x + căn(4x-1) 
dk[1/4;8/3] 
6x-2+căn(4x-1)-căn(3-8x)=0 
<->2(3x-1)+(4x-1-3+8x)/[căn(4x-1)+căn(... 
<->2(3x-1)+(12x-4)/[căn(4x-1)+căn(3-8x... 
<->2(3x-1)+4(3x-1)/[căn(4x-1)+căn(3-8x... 
<->(3x-1){2+4/[căn(4x-1)+căn(3-8x)]}=0 
2+4/[căn(4x-1)+căn(3-8x)>0 
nen 3x-1=0 
x=1/3

14 tháng 9 2017

 a)  căn(2x+5) - căn(3-x) = x^2-5x+8 
dkxd -5/2<=x<=3 
căn(2x+5) - căn(3-x) = x^2-5x+8 
<->[can(2x+5)-3]-[can(3-x)-1]=x^2-5x+6 
nhan lien hop 
<->(2x+5-9)/[can(2x+5)+3] -(3-x-1)/[can(3-x)+1]=(x-2)(x-3) 
<->(2x-4)/[can(2x+5)+3] -(2-x)/[can(3-x)+1]-(x-2)(x-3)=0 
<->(x-2).M=0 
<->x=2 hoac M=0 
M=2/[can(2x+5)+3]+1/[can(3-x)+1]-x+3 

2/[can(2x+5)+3]+1/[can(3-x)+1]>0 voi moi x 
voi -5/2<=x<=3 <->3-x thuoc[0;11/2] 
nen M>0 
vay x=2 
b/ 2+ căn(3-8x) = 6x + căn(4x-1) 
dk[1/4;8/3] 
6x-2+căn(4x-1)-căn(3-8x)=0 
<->2(3x-1)+(4x-1-3+8x)/[căn(4x-1)+căn(... 
<->2(3x-1)+(12x-4)/[căn(4x-1)+căn(3-8x... 
<->2(3x-1)+4(3x-1)/[căn(4x-1)+căn(3-8x... 
<->(3x-1){2+4/[căn(4x-1)+căn(3-8x)]}=0 
2+4/[căn(4x-1)+căn(3-8x)>0 
nen 3x-1=0 
x=1/3

12 tháng 5 2016

cái pt thứ 2 bạn nhân 2 vế vs x

Sau đó chuyển hết sang 1 vế,,,dùng máy băm nghiệm

12 tháng 5 2016

x4+x3-6x3-6x2+6x2+6x+4x+4=0

17 tháng 8 2020

\(\sqrt{x+4\sqrt{x-1}+3}-\sqrt{4x+4\sqrt{x-1}-3}=1\)(đk:\(1\le x< 2\)) Lý do có điều kiện này là nhờ vào việc VT=1>0

\(\Leftrightarrow\sqrt{\left(x-1\right)+4\sqrt{x-1}+4}-\sqrt{4\left(x-1\right)+4\sqrt{x-1}+1}=1\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+2\right)^2}-\sqrt{\left(2\sqrt{x-1}+1\right)^2}=1\)

\(\Leftrightarrow\left(\sqrt{x-1}+2\right)-\left(2\sqrt{x-1}+1\right)=1\)

\(\Leftrightarrow\sqrt{x-1}=0\)

\(\Leftrightarrow x=1\)(thõa mãn điều kiện)

17 tháng 8 2020

Ta có : \(\sqrt{x+4\sqrt{x-1}+3}-\sqrt{4x+4\sqrt{x-1}-3}=1\) ( ĐK : \(x\ge1\) )

\(\Leftrightarrow\sqrt{\left(x-1\right)+4\sqrt{x-1}+4}-\sqrt{4.\left(x-1\right)+4.\sqrt{x-1}+1}=1\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+2\right)^2}-\sqrt{\left(2\sqrt{x-1}+1\right)^2}=1\)

\(\Leftrightarrow\left|\sqrt{x-1}+2\right|-\left|2\sqrt{x-1}+1\right|=1\)

\(\Leftrightarrow\sqrt{x-1}+2-2\sqrt{x-1}-1=1\)

\(\Leftrightarrow\sqrt{x-1}=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\) ( Thỏa mãn )