K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2020

nghiệm nguyên hay k nguyên bn

23 tháng 11 2022

1; Khi m=1 thì pt sẽ là \(\sqrt{x+1}=x+1\)

=>(x+1)^2=(x+1)

=>x(x+1)=0

=>x=0hoặc x=-1

2: \(\Leftrightarrow x+1=\left(x+m\right)^2\)

=>x^2+2mx+m^2-x-1=0

=>x^2+x(2m-1)+m^2-1=0

Δ=(2m-1)^2-4(m^2-1)

=4m^2-4m+1-4m^2+4

=-4m+5

Để pt có 2 nghiệm pb thì -4m+5>0

=>-4m>-5

=>m<5/4

Để pt có nghiệm kép thì 5-4m=0

=>m=5/4

Để pt vô nghiệm thì -4m+5<0

=>m>5/4

14 tháng 5 2021

a, Đặt \(x^2=t\left(t\ge0\right)\)

Khi đó \(PT< =>t^1+4t-5=0\)

\(< =>t^2-1+4t-4=0\)

\(< =>\left(t-1\right)\left(t+1\right)+4\left(t-1\right)=0\)

\(< =>\left(t-1\right)\left(t+5\right)=0\)

\(< =>\orbr{\begin{cases}t=1\left(tm\right)\\t=-5\left(loai\right)\end{cases}}\)

\(< =>x^2=1< =>\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)

Vậy ...

14 tháng 5 2021

Thay m = 2 vào , ta có :

\(PT< =>x^2-2\left(2+1\right)x+2^2+3.2-4=0\)

\(< =>x^2-6x+6=0\)

\(< =>\left(x^2-6x+9\right)-\sqrt{3}^2=0\)

\(< =>\left(x-3-\sqrt{3}\right)\left(x-3+\sqrt{3}\right)=0\)

\(< =>\orbr{\begin{cases}x=3+\sqrt{3}\\x=3-\sqrt{3}\end{cases}}\)

28 tháng 5 2016

Đề có sai sót chỗ nào k v bạn

17 tháng 5 2017

đợt nọ my teacher làm như thế này:

\(x\ge-1\)nên \(\sqrt{x+1}\ge0\)

\(\sqrt{x+10}\ge3\)

\(VT\ge3\)

tương tự \(VF\ge3\)

nên VT=VT <=> x=-1

p/s:I don't sure about that

17 tháng 5 2017

I am noob English *

27 tháng 4 2018

\(\frac{x^2-8}{x^2-16}=\frac{1}{x+4}+\frac{1}{x-4}\)

\(\Rightarrow\frac{x^2-8}{\left(x+4\right)\left(x-4\right)}=\frac{x-4}{\left(x+4\right)\left(x-4\right)}+\frac{x+4}{\left(x-4\right)\left(x+4\right)}\)

\(\Rightarrow x^2-8=x-4+x+4\)

\(\Rightarrow x^2-8=2x\)

\(\Rightarrow x^2-2x-8=0\)

\(\Delta=b^2-4ac=\left(-2\right)^2-4.1.\left(-8\right)=4+32=36>0\)

phương trình có 2 nghiệm phân biệt : \(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{2+\sqrt{36}}{2}=\frac{2+6}{2}=\frac{8}{2}=4\)

                                                      \(x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{2-\sqrt{36}}{2}=\frac{2-6}{2}=\frac{-4}{2}=\left(-2\right)\)

20 tháng 5 2017

mik ko biết vì mới chỉ học lớp 6

20 tháng 5 2017

ĐKXĐ: \(x\ge\frac{1}{2}\)

Đề \(\Rightarrow\sqrt{\frac{x+7}{x+1}}-\sqrt{3}+8-2x^2-\left(\sqrt{2x-1}-\sqrt{3}\right)=0\)

Nhân liên hợp ta được:

\(\frac{\left(\sqrt{\frac{x+7}{x+1}}-\sqrt{3}\right)\left(\sqrt{\frac{x+7}{x+1}}+\sqrt{3}\right)}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}+2\left(4-x^2\right)-\frac{\left(\sqrt{2x-1}-\sqrt{3}\right)\left(\sqrt{2x+1}+\sqrt{3}\right)}{\sqrt{2x+1}+\sqrt{3}}=0\)

\(\Rightarrow\frac{\frac{x+7}{x+1}-3}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}+2\left(4-x^2\right)-\frac{2x-1-3}{\sqrt{2x+1}+\sqrt{3}}=0\)

\(\Rightarrow\frac{\frac{-2x+4}{x+1}}{\sqrt{\frac{x+7}{x+1}}+\sqrt{3}}+2\left(2-x\right)\left(2+x\right)-\frac{2x-4}{\sqrt{2x+1}+\sqrt{3}}=0\)

\(\Rightarrow\left(x-2\right)\left[\frac{-2}{\left(x+1\right)\left(\sqrt{\frac{x+7}{x+1}}+\sqrt{3}\right)}-2\left(2+x\right)-\frac{2}{\sqrt{2x+1}+\sqrt{3}}\right]=0\)

mà \(-\frac{2}{\left(x+1\right)\left(\sqrt{\frac{x+7}{x+1}}+\sqrt{3}\right)}-2\left(2+x\right)-\frac{2}{\sqrt{2x+1}+\sqrt{3}}< 0\)

=> x - 2 = 0 => x = 2

                                                   Vậy x = 2