Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải phương trình trên(nêu rõ cách giải):
\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-2\sqrt{x-1}}=2\sqrt{2}\)
\(\left(x-1\right)-4\sqrt{x-1}+4+\left(y-2\right)-6\sqrt{y-2}+9+\left(z-3\right)-8\sqrt{z-3}+16=0\)
\(\left(\sqrt{x-1}-2\right)^2+\left(\sqrt{y-2}-3\right)^2+\left(\sqrt{z-3}-4\right)^2=0\)
giải ra x=5 y=11 z=19
ĐK: \(\hept{\begin{cases}x-5\ge0\\x-4-2\sqrt{x-5}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge5\\\left(\sqrt{x-5}-1\right)^2\ge0\end{cases}}\Leftrightarrow x\ge5\)
\(\sqrt{36\left(x-4-2\sqrt{x-5}\right)}-18=0\)
\(\Leftrightarrow\sqrt{36\left(x-4-2\sqrt{x-5}\right)}=18\)
\(\Leftrightarrow\left(x-4-2\sqrt{x-5}\right)=9\)
\(\Leftrightarrow\left(\sqrt{x-5}-1\right)^2=9\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-5}-1=3\\\sqrt{x-5}-1=-3\end{cases}}\Leftrightarrow\orbr{\begin{cases}\sqrt{x-5}=4\left(tm\right)\\\sqrt{x-5}=-2\left(l\right)\end{cases}}\Leftrightarrow x=21\left(tm\right)\)
Rút gọn phương trình đc
\(\left(\sqrt{x+1}+2\right)^2=x+1\)
Xét 2 trường hợp 1 cái là bằng căn của x+1, 1 cái là bằng âm căn của x+1.
rồi giải pt là ra.
Kết luận là X=0
a)\(\sqrt{3x+1}+2x=\sqrt{x-4}-5\left(ĐKXĐ:x\ge4\right)\)
\(\Leftrightarrow\left(\sqrt{3x+1}-\sqrt{x-4}\right)+\left(2x+5\right)=0\)
\(\Leftrightarrow\frac{3x+1-x+4}{\sqrt{3x+1}+\sqrt{x-4}}+\left(2x+5\right)=0\)
\(\Leftrightarrow\frac{2x+5}{\sqrt{3x+1}+\sqrt{x-4}}+\left(2x+5\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1\right)=0\)
a') (tiếp)
\(\Leftrightarrow\orbr{\begin{cases}2x+5=0\\\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2,5\left(KTMĐKXĐ\right)\\\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\end{cases}}\)
Xét phương trình \(\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\)(1)
Với mọi \(x\ge4\), ta có:
\(\sqrt{3x+1}>0\); \(\sqrt{x-4}\ge0\)
\(\Rightarrow\sqrt{3x+1}+\sqrt{x-4}>0\Rightarrow\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}>0\)
\(\Rightarrow\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1>0\)
Do đó phương trình (1) vô nghiệm.
Vậy phương trình đã cho vô nghiệm.
ĐKXĐ: \(\hept{\begin{cases}x\ne-1\\\frac{3x-2}{x+1}\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne-1\\\orbr{\begin{cases}x\ge\frac{3}{2}\\x\le-1\end{cases}}\end{cases}}}\)
Khi đó: \(\sqrt{\frac{3x-2}{x+1}}=3\)
\(\Leftrightarrow\frac{3x-2}{x+1}=9\)
\(\Leftrightarrow9x+9=3x-2\)
\(\Leftrightarrow6x=-11\)
\(\Leftrightarrow x=\frac{-11}{6}\)(T/m ĐKXĐ)
ĐKXĐ: \(\hept{\begin{cases}x\ne-1\\x\ge\frac{3}{2}hoặcx\le-1\end{cases}}\)
điêu sai rồi
x = -3 nha bạn