K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2016

ĐKXĐ: bạn tự đặt nhé

đặt \(\sqrt{x^2-8}=a\) và \(\sqrt{x-2}=b\)==> \(a^2+b^2=x^2+x-10\)<=> \(x^2+x-9=a^2+b^2+1\)

khi đó pt đầu trở thành 

\(a^2+b^2+1=a+b+ab\)

<=> \(2a^2+2b^2+2-2a-2b-2ab=0\)

<=> \(\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)=0\)

<=>\(\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2=0\)

<=> \(a=b=1\)

==> \(\sqrt{x-2}=1\)<=>x=3 

vậy x=3

10 tháng 9 2016

Nó có 1 nghiệm là 9

Bạn chứng minh nó là nghiệm duy nhất đi

11 tháng 9 2016

1 nghiệm ls 9

3 tháng 7 2020

\(ĐK:\orbr{\begin{cases}x\le1-\sqrt{2}\\1+\sqrt{2}\le x\le3\end{cases}}\)

\(\sqrt{2x^2-4x-2}+\left(x-1\right)^2\sqrt{12x-4}=\left(8-x\right)\sqrt{3-x}\)\(\Leftrightarrow\sqrt{2x^2-4x-2}-\sqrt{3-x}+\left(2x^2-3x-5\right)\sqrt{3-x}=0\)\(\Leftrightarrow\frac{2x^2-3x-5}{\sqrt{2x^2-4x-2}+\sqrt{3-x}}+\left(2x^2-3x-5\right)\sqrt{3-x}=0\)\(\Leftrightarrow\left(2x^2-3x-5\right)\left(\frac{1}{\sqrt{2x^2-4x-2}+\sqrt{3-x}}+\sqrt{3-x}\right)=0\)(*)

Mà ta có thể thấy được: \(\frac{1}{\sqrt{2x^2-4x-2}+\sqrt{3-x}}+\sqrt{3-x}>0\)nên từ phương trình (*) suy ra \(2x^2-3x-5=0\Leftrightarrow\left(x+1\right)\left(2x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{5}{2}\end{cases}}\)(t/m điều kiện)

Vậy phương trình có tập nghiệm \(S=\left\{-1;\frac{5}{2}\right\}\)

4 tháng 7 2020

thấy sai sai)):

18 tháng 9 2016

Đặt \(t=\sqrt{x}-2\) , pt trở thành 

\(\left(t+1\right)^3+\left(t-1\right)^3=8t^3\Leftrightarrow t^3+3t^2+3t+1+t^3-3t^2+3t-1=8t^3\)

\(\Leftrightarrow6t^3-6t=0\Leftrightarrow t\left(t-1\right)\left(t+1\right)=0\)

=> t = 0 hoặc t = 1 hoặc t = -1

Từ đó suy ra x.

18 tháng 9 2016

ko ai giải đc à

17 tháng 1 2017

Nhìn không đủ chán rồi không dám động vào

17 tháng 1 2017

Viết đề kiểu gì v @@