Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dk \(x\ge0;2x+1\ge0< =>x\ge0\)
2(x+1)\(\sqrt{x}+\sqrt{3\left(x+1\right)^2\left(2x+1\right)}=\left(x+1\right)\left(5x^2-8x+8\right)< =>\)
\(2\sqrt{x}+\sqrt{3\left(2x+1\right)}=5x^2-8x+8\)(x+1>0 với x\(\ge0\)) <=>
2\(\sqrt{x}-2+\sqrt{6x+3}-3=5x^2-8x+3\) <=>\(\frac{2\left(x-1\right)}{\sqrt{x}+1}+\frac{6\left(x-1\right)}{\sqrt{6x+3}+3}=\left(x-1\right)\left(5x-3\right)< =>\)x-1=0 <=>x= 1 hoặc
\(\frac{2}{\sqrt{x}+1}+\frac{6}{\sqrt{6x+3}+3}=5x-3\)
x>1 thì \(\frac{2}{\sqrt{x}+1}+\frac{6}{\sqrt{6x+3}+3}< \frac{2}{1+1}+\frac{6}{3+3}=2\) hay 5x- 3<2 <=> x<1( vô lý)
x<1 thì \(\frac{2}{\sqrt{x}+1}+\frac{6}{\sqrt{6x+3}+}>2\) hay 5x-3>2 <=> x>1 (vô lý)
x=1 thỏa mãn
vậy pt có nghiệm duy nhất x=1
ko ghi lại đề
\(8x^2+8x+6=\left(5x+4\right)\sqrt{x^2+3}\)\(3\)
bình hai vế ta đc
\(64x^2+64x+36=\left(5x+4\right)^2x^2+3\)
\(64.\left(x^2+x\right)+36=25x+16x^2+3\)
\(64.\left(x^2+x\right)+36=16\left(x+x^2\right)+9+3\)
\(64\left(x^2+x\right)+36=16\left(x+x^2\right)+12\)
\(=64-\left(x^2+x\right)+36-16\left(x+x^2\right)-12\)
\(=72\)
\(x\left(5x^3+2\right)-2\left(\sqrt{2x+1}-1\right)=0\)
\(\Leftrightarrow5x^4+2x-2\sqrt{2x+1}+2=0\)
\(\Leftrightarrow5x^4+\left(2x+1-2\sqrt{2x+1}+1\right)=0\)
\(\Leftrightarrow5x^4+\left(\sqrt{2x+1}-1\right)^2=0\)
có \(\hept{\begin{cases}5x^4\ge0\\\left(\sqrt{2x+1}-1\right)^2\ge0\end{cases}}\)mà \(5x^4+\left(\sqrt{2x+1}-1\right)^2=0\Rightarrow\hept{\begin{cases}5x^4=0\\\left(\sqrt{2x+1}-1\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^4=0\\\sqrt{2x+1}=1\end{cases}\Leftrightarrow x=0}\)
vạy x=0 là nghiệm của phương trình
Cre: Đàm Hải Ngọc
cái này dùng liên hợp dễ hơn
\(x\left(5x^3+2\right)-2\left(\sqrt{2x+1}-1\right)=0\left(đk:x\ge-\frac{1}{2}\right)\)
\(< =>x\left(5x^3+2\right)-2.\frac{2x+1-1}{\sqrt{2x+1}+1}=0\)
\(< =>x\left(5x^3+2\right)-x.\frac{4}{\sqrt{2x+1}+1}=0\)
\(< =>x\left(5x^3+2-\frac{4}{\sqrt{2x+1}+1}\right)=0< =>x=0\)
giờ dùng đk đánh giá cái ngoặc to vô nghiệm là ok
\(Đk:-1\le x\le3\)
Đặt: \(\hept{\begin{cases}u=\sqrt{x+1}\\v=\sqrt{3-x}\end{cases}}\) Ta suy ra:
\(u^2=x+1\)
\(3u^2-2v^2=5x-3\)
\(4u^2-v^2=5x+1\)
\(u^2+v^2=4\)
Pt đã cho trở thành:
\(2\left(3u^2-2v^2\right)+5uv^2=3\left(4u^2-v^2\right)\Leftrightarrow6u^2\left(2-u\right)=v^2\left(u+3\right)\)
Thay \(v^2=4-u\) ta thu được pt:
\(2\left(3u^2-2v^2\right)+5uv^2=3\left(4u^2-v^2\right)\)
\(\Leftrightarrow6u^2\left(2-u\right)=\left(4-u^2\right)\left(u+3\right)\Leftrightarrow\orbr{\begin{cases}u=2\\u=\frac{5+\sqrt{145}}{10}\end{cases}}\)
Từ đó tìm đc các nghiệm của pt là: \(\orbr{\begin{cases}x=3\\x=\frac{7+\sqrt{145}}{10}\end{cases}}\)
điều kiện xác đinh \(x\ge-\frac{1}{2}\)
ta có \(x\left(5x^3+2\right)-2\left(\sqrt{2x+1}-1\right)=0\)
\(\Leftrightarrow5x^4+2x-2\sqrt{2x+1}+2=0\Leftrightarrow5x^4+2x+1-2\sqrt{2x+1}+1=0\)
\(\Leftrightarrow5x^4+\left(\sqrt{2x+1}-1\right)^2=0=>\orbr{\begin{cases}5x^4=0\\\sqrt{2x+1}-1=0\end{cases}\Leftrightarrow x=0\left(nhận\right)}\)
zậy \(S=\left\{0\right\}\)
ĐK: \(x\ge\frac{-1}{2}\). PT đã cho có thể viết lại thành
\(5x^4+\left(\sqrt{2x+1}-1\right)^2=0\)
Do \(5x^4\ge0,\left(\sqrt{2x+1}-1\right)^2\ge0\)nên PT trên chỉ thỏa mãn khi \(\hept{\begin{cases}5x^4=0\\\left(\sqrt{2x+1}-1\right)^2=0\end{cases}}\)
Giải hệ này ta được x=0
Vậy PT đã cho có nghiệm duy nhất x=0