Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(E\: =x^2+\frac{2x}{y}+\frac{1}{y^2}+y^2+\frac{2y}{x}+\frac{1}{x^2}=\left(x^2+y^2\right)+2\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{1}{x^2}+\frac{1}{y^2}\right)\)
\(\Rightarrow E\ge4+4+\frac{1}{x^2}+\frac{1}{y^2}=8+\frac{x^2+y^2}{x^2y^2}\)
Do: \(4=x^2+y^2\ge2xy\Rightarrow xy\le2\Rightarrow x^2y^2\le4\Rightarrow\frac{4}{x^2y^2}\ge1\)
\(\Rightarrow E\ge8+1=9\)
Dấu bằng xảy ra khi x=y=\(\sqrt{2}\)
11 phút trước (15:52)
Cho a,b >0 và a+b=1. chứng minh rằng: (a+1a )2+(b+1b 2)≥12,5
Mình cần gấp, ai làm nhanh và đúng nhất được 3 ks!
Câu hỏi tương tự Đọc thêm Báo cáo
Toán lớp 9 Bất đẳng thức
VKOOK_BTS
Trả lời
0
Đánh dấu
8 phút trước (15:31)
\(\frac{x^2-5x+4}{x^2-2}=5\left(x-1\right)\)
\(\Rightarrow\frac{x^2-x-4x+4}{x^2-2}=5\left(x-1\right)\)
\(\Rightarrow\frac{x\left(x-1\right)-4\left(x-1\right)}{x^2-2}=5\left(x-1\right)\)
\(\Rightarrow\frac{\left(x-1\right)\left(x-4\right)}{x^2-2}=5\left(x-1\right)\)
Với x = 1
=> x - 1 = 0
=> \(\frac{0.\left(x-4\right)}{x^2-2}=5.0\)
=> 0 = 0 ( luôn đúng )
Với x khác 1
=> x - 1 khác 0
=> \(\frac{x-4}{x^2-2}=5\)( chia cả hai vế cho x - 1 )
=> \(x-4=5x^2-10\)
=> \(5x^2-x-6=0\)
=> \(5x^2+5x-6x-6=0\)
=> \(5x\left(x+1\right)-6\left(x+1\right)=0\)
=> \(\left(x+1\right)\left(5x-6\right)=0\)
=> \(\orbr{\begin{cases}x+1=0\\5x-6=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=\frac{6}{5}\end{cases}}}\)
Vậy \(x\in\left\{1;-1;\frac{6}{5}\right\}\)
( 99 - 1 ) : 2 + 1 = 50 ( số )
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
\(M=ab+\frac{1}{a^2}+\frac{1}{b^2}\ge ab+\frac{2}{ab}\ge2\sqrt{2}\)
d)Điều kiện xác định x khác 1 và x khác -2 Đặt \(a=\frac{x-1}{x+2}\);\(b=\frac{x-3}{x-1}\)
Ta có \(a.b=\frac{x-1}{x+2}.\frac{x-3}{x-1}=\frac{x-3}{x+2}\)
Do đó phương trình viết thành \(a^2+a.b-2b^2=0\)
\(\Leftrightarrow a^2-b^2+a.b-b^2=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+b\right)+b\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a+2b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=b\\a=-2b\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}\frac{x-1}{x+2}=\frac{x-3}{x-1}\\\frac{x-1}{x+2}=\frac{-2.\left(x-2\right)}{x-1}\end{cases}\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=\left(x-3\right).\left(x+2\right)\\\left(x-1\right)^2=-2.\left(x^2-4\right)\end{cases}}}\)
Đến đây bạn có thể giải ra tìm x đc
\(x^2-2x+3=t\left(t\ge0\right)\)
\(pt\Leftrightarrow\frac{1}{t-1}+\frac{1}{t}=\frac{9}{2\left(t+1\right)}\)
\(\Leftrightarrow\frac{2t\left(t+1\right)}{2t\left(t^2-1\right)}+\frac{2\left(t^2-1\right)}{2t\left(t^2-1\right)}-\frac{9t\left(t-1\right)}{2t\left(t^2-1\right)}=0\)
\(\Leftrightarrow-5t^2+11t-2=0\)
\(\Leftrightarrow\left(5x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=2\end{cases}}\)
\(\frac{x^4-5x+4}{x^2-2}=5\left(x-1\right)\)
\(\Leftrightarrow\frac{x^4-5x+4}{x^2-2}\left(x^2-2\right)=5\left(x-1\right)\left(x^2-2\right)\)
\(\Leftrightarrow x^4-5x+4=5\left(x-1\right)\left(x^2-2\right)\)
\(\Rightarrow\hept{\begin{cases}x=\pm1\\x=2\\x=3\end{cases}}\)
P/s: ko chắc
ĐKXĐ : X2 \(\ne\)2
Ta có: \(\frac{x^4-5x+4}{x^2-2}\)= \(5\left(x-1\right)\)\(\Leftrightarrow\frac{\left(x-1\right)\left(x^3+x^2+x-4\right)}{x^2-2}=5\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{x^3+x^2+x-4}{x^2-2}-5\right)\)\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\\frac{x^3+x^2+x-4}{x^2-2}-5=0\end{cases}}\)
\(+x-1=0\Rightarrow x=1\)
+)\(\frac{x^3+x^2+x-4}{x^2-2}-5=0\Leftrightarrow x^3+x^2+x-4-5x^2+10=0\)
\(\Leftrightarrow x^3-4x^2+x+6=0\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x-3\right)=0\)\(\Leftrightarrow x=2\)hoặc \(x=3\)
hoặc x=-1
Bạn tự kết luận nhé..