K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2019

ĐK: x >=1

 \(4x^2=5x-2\sqrt{x-1}-1\)

<=> \(4x^2=5x-2\sqrt{x-1}-1\)

<=> \(4x^2-4x+1=5x-2\sqrt{x-1}-1+1-4x\)

<=> \(\left(2x-1\right)^2=\left(x-1\right)-2\sqrt{x-1}+1\)

<=> \(\left(2x-1\right)^2=\left(\sqrt{x-1}-1\right)^2\)

Em tự làm tiếp nhé!

8 tháng 10 2020

đk: \(\hept{\begin{cases}x^2-2x+5\ge0\\4x+5\ge0\end{cases}}\Leftrightarrow x\ge\frac{-5}{4}\)

Ta có: \(x^3-2x^2-\sqrt{x^2-2x+5}=2\sqrt{4x+5}-5x-4\)

\(\Leftrightarrow3x^3-6x^2+15x+12-3\sqrt{x^2-2x+5}-6\sqrt{4x+5}=0\)

\(\Leftrightarrow3\left(x+1-\sqrt{x^2-2x+5}\right)+2\sqrt{4x+5}\left(\sqrt{4x+5}-3\right)+3x^3-6x^2+4x-1=0\)

\(\Leftrightarrow\frac{12\left(x-1\right)}{x+1+\sqrt{x^2-2x+5}}+\frac{8\left(x-1\right)\sqrt{4x+5}}{\sqrt{4x+5}+3}+\left(x-1\right)\left(3x^2-3x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{12}{x+1+\sqrt{x^2-2x+5}}+\frac{8\sqrt{4x+5}}{\sqrt{4x+5}+3}+3x^2-3x+1\right)=0\Leftrightarrow x=1\)

15 tháng 4 2017

ĐKXĐ: x – 6 ≥ 0 ⇔ x > 6. Bình phương hai vế thì được 5x + 6 = (x – 6)2 ⇔ x2 = 2 (loại), x2 = 15 (nhận).

b) ĐKXĐ: – 2 ≤ x ≤ 3. Bình phương hai vế thì được 3 - x = x + 3 + 2
⇔ -2x = 2.

Điều kiện x ≤ 0. Bình phương tiếp ta được:

x2 = x + 2 => x1 = -1 (nhận); x2 = 2 (loại).

Kết luận: Tập nghiệm S {-1}.

c) ĐKXĐ: x ≥ -2.

=> 2x2 + 5 = (x + 2)2 => x2 - 4x + 1 = 0

=> x1 =2 – (nhận), x2 = 2 + (nhận).

d) ĐK: x ≥ .

=> 4x2 + 2x + 10 = (3x + 1)2 => x1 = (loại), x2 = 1 (nhận).

NV
15 tháng 7 2020

e/

ĐKXĐ: \(x\ge2\)

\(\Leftrightarrow x^2+8x-2+6\sqrt{x\left(x+1\right)\left(x-2\right)}\le5x^2-4x-6\)

\(\Leftrightarrow3\sqrt{x\left(x+1\right)\left(x-2\right)}\le2x^2-6x-2\)

\(\Leftrightarrow3\sqrt{\left(x^2-2x\right)\left(x+1\right)}\le2x^2-6x-2\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-2x}=a\ge0\\\sqrt{x+1}=b>0\end{matrix}\right.\)

\(\Rightarrow2a^2-2b^2=2x^2-6x-2\)

BPT trở thành:

\(3ab\le2a^2-2b^2\Leftrightarrow2a^2-3ab-2b^2\ge0\)

\(\Leftrightarrow\left(2a+b\right)\left(a-2b\right)\ge0\)

\(\Leftrightarrow a\ge2b\Rightarrow\sqrt{x^2-2x}\ge2\sqrt{x+1}\)

\(\Leftrightarrow x^2-2x\ge4x+4\)

\(\Leftrightarrow x^2-6x-4\ge0\)

\(\Rightarrow x\ge3+\sqrt{13}\)

NV
15 tháng 7 2020

d/

ĐKXĐ: \(x\ge-1\)

\(3\sqrt{\left(x+1\right)\left(x^2-x+1\right)}+4x^2-5x+3\ge0\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a>0\\\sqrt{x+1}=b\ge0\end{matrix}\right.\)

\(\Rightarrow4a^2-b^2=4x^2-5x+3\)

BPT trở thành:

\(4a^2+3ab-b^2\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(4a-b\right)\ge0\)

\(\Leftrightarrow4a-b\ge0\Rightarrow4a\ge b\)

\(\Rightarrow4\sqrt{x^2+x+1}\ge\sqrt{x+1}\)

\(\Leftrightarrow16x^2+16x+4\ge x+1\)

\(\Leftrightarrow16x^2+15x+3\ge0\)

\(\Rightarrow\left[{}\begin{matrix}-1\le x\le\frac{-15-\sqrt{33}}{32}\\x\ge\frac{-15+\sqrt{33}}{32}\end{matrix}\right.\)

28 tháng 11 2019

1,

đk x>= 1

pt <=>\(4x^2-5x+1=-2\sqrt{x-1}\)

<=> \(\left(x-1\right)\left(4x-1\right)=-2\sqrt{x-1}\)

Đặt \(\sqrt{x-1}=t\left(t\ge0\right)\)

\(t^2\left(4t^2+3\right)+2t=0\)

\(\Leftrightarrow4t^4+3t^2+2t=0\)

\(\left[{}\begin{matrix}t=0\\t=-\frac{1}{2}\left(l\right)\\2t^2+t-2=0\left(l\right)\end{matrix}\right.=>t=0=>x=1\left(TMĐK\right)\)

2 tháng 4 2017

Bấm MODE nhập 5 nhập 3

a, bấm 5 = -3 = -7 = ta được \(x_1=\dfrac{3+\sqrt{149}}{10};x_2=\dfrac{3-\sqrt{149}}{10}\)

Tương tự cho các câu còn lại