K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 6 2019

\(\Leftrightarrow\left(3x^2+7x+4\right)\left(36x^2+84x+49\right)=6\)

Đặt \(3x^2+7x=a\Rightarrow36x^2+84x=12a\)

\(\left(a+4\right)\left(12a+49\right)-6=0\)

\(\Leftrightarrow12a^2+97a+190=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=-\frac{10}{3}\\a=-\frac{19}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x^2+7x+\frac{10}{3}=0\\3x^2+7x+\frac{19}{4}=0\end{matrix}\right.\) \(\Leftrightarrow...\)

28 tháng 6 2019

Nhận thấy x = 0 không phải là nghiệm.

Xét x khác 0.Chia hai vế của pt cho x2 ta được:

\(x^2-3x-6+\frac{3}{x}+\frac{1}{x^2}=0\)

\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)-3\left(x-\frac{1}{x}\right)-6=0\)

Đặt \(x-\frac{1}{x}=a\). PT trở thành:

\(a^2-3a-4=0\Leftrightarrow\left[{}\begin{matrix}a=4\\a=-1\end{matrix}\right.\)

Với a = 4 thì \(x=4+\frac{1}{x}=\frac{4x+1}{x}\Leftrightarrow x^2-4x-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2+\sqrt{5}\\x=2-\sqrt{5}\end{matrix}\right.\) (nghiệm xấu chút nhưng dễ giải lắm ạ)

Với a = -1 thì \(x=\frac{1}{x}-1=\frac{1-x}{x}\Leftrightarrow x^2+x-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1+\sqrt{5}}{2}\\x=\frac{-1-\sqrt{5}}{2}\end{matrix}\right.\) (cái này thì max xấu rồi ;( )

28 tháng 6 2019

tth gioir :)

17 tháng 2 2017

\(\frac{3x-2}{x+7}=\frac{6x+1}{2x-3}\) (Đkxđ: \(x\ne-7;x\ne\frac{3}{2}\))

\(\Rightarrow\left(3x-2\right)\left(2x-3\right)=\left(6x+1\right)\left(x+7\right)\)

\(\Leftrightarrow6x^2-9x-4x+6=6x^2+42x+x+7\)

\(\Leftrightarrow6x^2-9x-4x-6x^2-42x-x=7-6\)

\(\Leftrightarrow-56x=1\)

\(\Leftrightarrow x=-\frac{1}{56}\) (t/m đkxđ)

Vậy \(S=\left\{-\frac{1}{56}\right\}\)

17 tháng 2 2017

ĐKXĐ: x khác -7 và 3/2

Từ đề bài <=> (3x-2)(2x-3) = (6x+1)(x+7)

<=> 6x^2-4x-9x+6 = 6x^2+x+42x+7

<=> -13x+6 = 43x+7

<=> 6-7 = 43x+13x

<=> 56x = -1

<=> x = -1/56 (TM)

Vậy ...

NV
29 tháng 6 2019

ĐKXĐ: ...

\(\Leftrightarrow\frac{2x}{3x^2-4x+1}-\frac{7x}{3x^2+2x+1}=6\)

\(\Leftrightarrow\frac{2}{3x-4+\frac{1}{x}}-\frac{7}{3x+2+\frac{1}{x}}=6\)

Đặt \(3x-4+\frac{1}{x}=a\)

\(\frac{2}{a}-\frac{7}{a+6}=6\)

\(\Leftrightarrow2\left(a+6\right)-7a=6a\left(a+6\right)\)

\(\Leftrightarrow6a^2+41a-12=0\)

Nghiệm xấu, bạn coi lại đề

23 tháng 10 2019

GPT

\(\frac{3}{3x^2-4x+1}+\frac{13}{3x^2+2x+1}=\frac{6}{x}\)

Y
30 tháng 6 2019

\(\Leftrightarrow\left(36x^2+84x+48\right)\left(36x^2+84x+49\right)=72\)

\(\Leftrightarrow t\left(t+1\right)=72\) ( với \(t=36x^2+84x+48\) )

\(\Leftrightarrow t^2+t-72=0\Leftrightarrow\left(t-8\right)\left(t+9\right)=0\)

\(\Leftrightarrow t-8=0\) ( do \(t+9=36x^2+84x+49+8=\left(6x+7\right)^2+8>0\forall x\))

\(\Leftrightarrow36x^2+84x+48=8\)

\(\Leftrightarrow\left(6x+7\right)^2=9\Leftrightarrow\left[{}\begin{matrix}6x+7=3\\6x+7=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{2}{3}\\x=-\frac{5}{3}\end{matrix}\right.\) ( TM )

29 tháng 6 2019

x=\(\dfrac{-2}{3}\)

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

Lời giải:

ĐKXĐ: $x\neq -1; x\neq -2$

PT \(\Leftrightarrow 2(2x^2+6x+4)+2-\frac{10}{x^2+3x+2}=5\)

\(\Leftrightarrow 4(x^2+3x+2)-\frac{10}{x^2+3x+2}-3=0\)

Đặt \(x^2+3x+2=a\). Khi đó PT trở thành:

\(4a-\frac{10}{a}-3=0\)

\(\Rightarrow 4a^2-3a-10=0\)

\(\Leftrightarrow (a-2)(4a+5)=0\Rightarrow \left[\begin{matrix} a-2=0\\ 4a+5=0\end{matrix}\right.\)

Nếu \(a-2=0\Leftrightarrow x^2+3x+2-2=0\Leftrightarrow x^2+3x=0\)

\(\Leftrightarrow x(x+3)=0\Rightarrow \left[\begin{matrix} x=0\\ x=-3\end{matrix}\right.\)

Nếu \(4a+5=0\Leftrightarrow 4(x^2+3x+2)+5=0\)

\(\Leftrightarrow 4x^2+12x+13=0\)

\(\Leftrightarrow (2x+3)^2=-4< 0\) (vô lý- loại)

Vậy.........

27 tháng 6 2019

Đặt \(t=2x^2+3x-1\) thì pt trở thành :

\(t\left(t-5\right)=-4\) \(\Leftrightarrow t^2-5t+4=0\)

\(\Leftrightarrow t^2-t-4t+4=0\)

\(\Leftrightarrow\left(t-1\right)\left(t-4\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}t=1\\t=4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x^2+3x-1=1\\2x^2+3x-1=4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}2x^2+3x-2=0\\2x^2+3x-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(2x-1\right)\left(x+2\right)=0\\\left(2x+5\right)\left(x-1\right)=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=-2\\x=-\frac{5}{2}\\x=1\end{matrix}\right.\) ( TM )

NV
27 tháng 6 2019

\(\Leftrightarrow\left(2x^2+3x-1\right)^2-5\left(2x^2+3x-1\right)+4=0\)

\(\Leftrightarrow\left(2x^2+3x-1-1\right)\left(2x^2+3x-1-4\right)=0\)

\(\Leftrightarrow\left(2x^2+3x-2\right)\left(2x^2+3x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x^2+3x-2=0\\2x^2+3x-5=0\end{matrix}\right.\)

Bấm máy...

30 tháng 6 2019

Xét thấy x = 0 không thỏa mãn pt

Ta có : \(6x^4+7x^3-36x^2+7x+6=0\)

\(\Leftrightarrow x^2\left(6x^2+7x-36+\frac{7}{x}+\frac{6}{x^2}\right)=0\)

\(\Leftrightarrow6x^2+7x-36+\frac{7}{x}+\frac{6}{x^2}=0\)

\(\Leftrightarrow6\left(x^2+\frac{1}{x^2}\right)+7\left(x+\frac{1}{x}\right)-36=0\)

\(\Leftrightarrow6\left(x+\frac{1}{x}\right)^2-7\left(x+\frac{1}{x}\right)-36-12=0\)

\(\Leftrightarrow6\left(x+\frac{1}{x}\right)^2-7\left(x+\frac{1}{x}\right)-48=0\)

Đặt \(x+\frac{1}{x}=a\)

\(pt\Leftrightarrow6a^2-7a-48=0\)

\(\Leftrightarrow6\left(a^2-\frac{7}{6}a-8\right)=0\)

\(\Leftrightarrow a^2-\frac{7}{6}a-8=0\)

\(\Leftrightarrow a^2-2\cdot a\cdot\frac{7}{12}+\frac{49}{144}-\frac{1201}{144}=0\)

\(\Leftrightarrow\left(a-\frac{7}{12}\right)^2=\left(\frac{\pm\sqrt{1201}}{12}\right)^2\)

\(\Leftrightarrow a=\frac{\pm\sqrt{1201}+7}{12}\)

\(\Leftrightarrow x+\frac{1}{x}=\frac{\pm\sqrt{1201}+7}{12}\)

Giải nốt nha bạn. Nghiệm hơi xấu

30 tháng 6 2019

:v làm kiểu này chắc chết, quy đồng ra pt bậc 2 nội nhìn cái hệ số c là thấy hết muốn làm r

NV
27 tháng 6 2019

\(\Leftrightarrow\left(4x+1\right)\left(3x+2\right)\left(12x-1\right)\left(x+1\right)-4=0\)

\(\Leftrightarrow\left(12x^2+11x+2\right)\left(12x^2+11x-1\right)-4=0\)

Đặt \(12x^2+11x-1=a\)

\(\left(a+3\right)a-4=0\Leftrightarrow a^2+3a-4=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}12x^2+11x-1=1\\12x^2+11x-1=-4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}12x^2+11x-2=0\\12x^2+11x+3=0\end{matrix}\right.\) \(\Leftrightarrow...\)