\(36^2+\frac{1}{x^2}+21x+\frac{7}{2x}-18=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2020

pt trên \(< =>1296+\frac{2}{2x^2}+\frac{7x}{2x^2}+21x-18=0\)

\(< =>1278+\frac{7x+2}{2x}+21x=0\)

\(< =>1278+\frac{9}{2}=-21x\)

\(< =>\frac{2565}{2}=-21x\)

\(< =>x=\frac{2565}{-42}=-\frac{855}{14}\)

Ko chắc lắm :P

29 tháng 4 2020

Bài làm

\(36^2+\frac{1}{x^2}+21x+\frac{7}{2x}-18=0\)

\(\Leftrightarrow\frac{36^2.2.x^2}{2x^2}+\frac{2}{2x^2}+\frac{2.x^2.21x}{2x^2}+\frac{7x}{2x^2}-\frac{2.x^2.18}{2x^2}=0\)

\(\Rightarrow2592x^2+2+42x^3+7x-36x^2=0\)

\(\Leftrightarrow2556x^2+42x^3+7x+2=0\)

tự giải nốt. 

30 tháng 4 2020

Không có cách khác à bạn? Mình làm cách đấy rồi mà thấy nó dài vl luôn nên đăng nên hỏi coi có cách khác không

8 tháng 5 2017

Cái bài đầu giải BPT bn ghi cái dj ak ,mik cx k hỉu nữa

V mik giải bài 2 nghen, sửa lại đề bài đầu rồi mik giải cho

\(3x-3=|2x+1|\)

Điều kiện: \(3x-3\ge0\Leftrightarrow3x\ge3\Leftrightarrow x\ge1\)

\(\Leftrightarrow\orbr{\begin{cases}2x+1=3x-3\\2x+1=-3x+3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x-3x=-1-3\\2x+3x=-1+3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}-x=-3\\5x=2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\left(n\right)\\x=\frac{2}{5}\left(l\right)\end{cases}}}\)

Vậy S={3}

Cài đề câu b ,bn xem lại nhé!

8 tháng 5 2017

\(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}>\frac{x^2}{7}-\frac{2x-3}{5}\)

\(\Leftrightarrow\frac{2x-3}{35}+\frac{5x\left(x-2\right)}{35}-\frac{5x^2}{35}+\frac{7\left(2x-3\right)}{35}>0\)

\(\Leftrightarrow2x-3+5x\left(x-2\right)-5x^2+7\left(2x-3\right)>0\)

\(\Leftrightarrow2x-3+5x^2-10x-5x^2+14x-21>0\)

\(\Leftrightarrow6x-24>0\)

\(\Leftrightarrow x>4\)

VẬY TẬP NGHIỆM CỦA BẤT PHƯƠNG TRÌNH LÀ :  S = {  \(x\text{\x}>4\)}

\(\frac{6x+1}{18}+\frac{x+3}{12}\le\frac{5x+3}{6}+\frac{12-5x}{9}\)

\(\Leftrightarrow\frac{6\left(6x+1\right)}{108}+\frac{9\left(x+3\right)}{108}\le\frac{18\left(5x+3\right)}{108}+\frac{12\left(12-5x\right)}{108}\)

\(\Leftrightarrow36x+6+9x+27\le90x+54+144-60x\)

\(\Leftrightarrow36x+6+9x+27-90x-54-144+60x\le0\)

\(\Leftrightarrow15x-165\le0\)

\(\Leftrightarrow x\le11\)

VẬY TẬP NGHIỆM CỦA BẤT PHƯƠNG trình ..........

tk mk nka !!! chúc bạn học tốt !!!

1 tháng 9 2016

Đặt x+ 2x = a ta có

\(\frac{1}{a-3}\)\(\frac{18}{a+2}\)\(\frac{18}{a+1}\)

<=> a- 15a + 56 = 0

<=> a = (7;8)

Thế vô tìm được nghiệm 

20 tháng 4 2018

a/ Đặt \(\hept{\begin{cases}\frac{x+1}{x-2}=a\\\frac{x+1}{x-4}=b\end{cases}}\) thì có

\(a^2+b-\frac{12b^2}{a^2}=0\)

\(\Leftrightarrow\left(a^2-3b\right)\left(a^2+4b\right)=0\)

b/ \(2x^2+3xy-2y^2=7\)

\(\Leftrightarrow\left(2x-y\right)\left(x+2y\right)=7\)

26 tháng 2 2022

hic, mk chx học

9 tháng 7 2017

a, \(1-\frac{2x-1}{9}=3-\frac{3x-3}{12}\)

\(\Leftrightarrow\frac{108-12\cdot\left(2x-1\right)}{108}=\frac{108\cdot3-9\cdot\left(3x-3\right)}{108}\)

\(\Rightarrow108-12\cdot\left(x-1\right)=108\cdot3-9\cdot\left(3x-3\right)\)

\(\Leftrightarrow108-24x+12=324-27x+27\)

\(\Leftrightarrow3x=231\)

\(\Rightarrow x=77\)

c,\(\frac{3}{4x-20}+\frac{15}{50-2x^2}+\frac{7}{6x+30}=0\)

\(\Rightarrow3\cdot\left(50-2x^2\right)\cdot\left(6x+30\right)+15\cdot\left(4x-20\right)\cdot\left(6x+30\right)+7\cdot\left(4x-20\right)\cdot\left(50-2x^2\right)=0\)

\(\Leftrightarrow900x+4500-36x^3-180x^2+360x^2+1800x-1800x-9000+1400x-56x^3-7000+280x^2=0\)

\(\Leftrightarrow-92x^3+460x^2+2300x-11500=0\)

\(\Leftrightarrow92x^3-460x^2-2300x+11500=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-5\\x=5\end{cases}}\)

28 tháng 5 2018

a) Thay x = 3 vào bất phương trình ta được: 2.3 + 3 < 9 <=> 9 < 9 (khẳng định sai)

Vậy x = 3 không là nghiệm của bất phương trình2x + 3 < 9

b) Thay x = 3 vào bất phương trình ta có: -4.3 > 2.3 + 5 => -12 > 11 (khẳng định sai)

Vậy x = 3 không là nghiệm của bất phương trình -4x > 2x + 5

c) Thay x = 3 vào bất phương trình ta có: 5 - 3 > 3.3 -12 => 2 > -3 (khẳng định đúng)

Vậy x = 3 là nghiệm của bất phương trình 5 - x > 3x - 12


 

28 tháng 2 2020

Hướng dẫn:

a) Đặt : \(x^2-2x+1=t\)Ta có: 

\(\frac{1}{t+1}+\frac{2}{t+2}=\frac{6}{t+3}\)

b) Đặt : \(x^2+2x+1=t\)

Ta có pt: \(\frac{t}{t+1}+\frac{t+1}{t+2}=\frac{7}{6}\)

c)ĐK: x khác 0

Đặt: \(x+\frac{1}{x}=t\)

KHi đó: \(x^2+\frac{1}{x^2}=t^2-2\)

Ta có pt: \(t^2-2-\frac{9}{2}t+7=0\)

28 tháng 2 2020

a) Đặt \(x^2-2x+3=v\)

Phương trình trở thành \(\frac{1}{v-1}+\frac{2}{v}=\frac{6}{v+1}\)

\(\Rightarrow\frac{v\left(v+1\right)+2\left(v+1\right)\left(v-1\right)}{v\left(v+1\right)\left(v-1\right)}=\frac{6v\left(v-1\right)}{v\left(v+1\right)\left(v-1\right)}\)

\(\Rightarrow v\left(v+1\right)+2\left(v+1\right)\left(v-1\right)=6v\left(v-1\right)\)

\(\Rightarrow v^2+v+2v^2-2=6v^2-6v\)

\(\Rightarrow3v^2-7v+2=0\)

Ta có \(\Delta=7^2-4.3.2=25,\sqrt{\Delta}=5\)

\(\Rightarrow\orbr{\begin{cases}v=\frac{7+5}{6}=2\\v=\frac{7-5}{6}=\frac{1}{3}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x^2-2x+3=2\\x^2-2x+3=\frac{1}{3}\end{cases}}\)

+) \(x^2-2x+1=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)

+)\(x^2-2x+3=\frac{1}{3}\)

\(\Rightarrow x^2-2x+\frac{8}{3}=0\)

Ta có \(\Delta=2^2-4.\frac{8}{3}=\frac{-20}{3}< 0\)

Vậy phương trình có 1 nghiệm là x = 1

6 tháng 8 2020

a) 2x^2 + 3 = 2x(x + 4) - 7

<=> 2x^2 + 3 = 2x^2 + 8x - 7

<=> 2x^2 - 2x^2 - 8x = - 7 - 3

<=> -8x = -10

<=> x = -10/-8 = 5/4

b) 4x^2 - 12x + 5 = 0

<=> 4x^2 - 2x - 10x + 5 = 0

<=> 2x(2x - 1) - 5(2x - 1) = 0

<=> (2x - 5)(2x - 1) = 0

<=> 2x - 5 = 0 hoặc 2x - 1 = 0

<=> x = 5/2 hoặc x = 1/2

c) |5 - 2x| = 1 - x
<=> \(\hept{\begin{cases}5-2x\text{ nếu }5-2x\ge0\Leftrightarrow x\ge\frac{5}{2}\\-\left(5-2x\right)\text{ nếu }5-2x< 0\Leftrightarrow x< \frac{5}{2}\end{cases}}\)

+) nếu x >= 5/2, ta có:

5 - 2x = 1 - x

<=> -2x + 1 = 1 - 5

<=> -x = -4

<=> x = 4 (tm)

+) nếu x < 5/2, ta có:

-(5 - 2x) = 1 - x

<=> -5 + 2x = 1 - x

<=> 2x + 1 = 1 + 5

<=> 3x = 6

<=> x = 2 (ktm)

d) \(\frac{2}{x-1}=\frac{\left(2x-1\right)\left(2x+1\right)}{x^3-1}-\frac{2x+3}{x^2+x+1}\) ; ĐKXĐ: x # 1 

<=> \(\frac{2}{x-1}=\frac{\left(2x-1\right)\left(2x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{2x+3}{x^2+x+1}\)

<=> \(\frac{2\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{\left(2x-1\right)\left(2x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{\left(2x+3\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

<=> 2(x^2 + x + 1) = (2x - 1)(2x + 1) - (2x + 3)(x - 1)

<=> 2x^2 + 2x + 2 = 2x^2 - x + 2

<=> 2x^2 - 2x^2 + 2x - x = 2 - 2

<=> x = 0

8 tháng 8 2020

mạn phép vô đây để kiếm câu trả lời 

\(2x^2+3=2x\left(x+4\right)-7\)

\(< =>2x^2+3=2x.x+4.2x-7\)

\(< =>2x^2+3=2x^2+8x-7\)

\(< =>2x^2+3-2x^2=8x-7\)

\(< =>\left(2x^2-2x^2\right)-8x=-7-3\)

\(< =>-8x=-10< =>8x=10\)

\(< =>x=10:8=\frac{10}{8}=\frac{5}{4}\)