K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2018

ĐK: \(x\ge\frac{2017}{2018}\)

\(pt\Leftrightarrow2017\sqrt{2017x-2016}-2017+\sqrt{2018x-2017}-1=0\)

\(\Leftrightarrow2017\frac{2017\left(x-1\right)}{\sqrt{2017x-2016}+1}+\frac{2018\left(x-1\right)}{\sqrt{2018x-2017}+1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{2017^2}{\sqrt{2017x-2016}+1}+\frac{2018}{\sqrt{2018x-2017}+1}\right)=0\)

Dễ thấy với \(x\ge\frac{2017}{2018}\Rightarrow\)\(\frac{2017^2}{\sqrt{2017x-2016}+1}+\frac{2018}{\sqrt{2018x-2017}+1}>0\)

\(\Leftrightarrow x-1=0\Leftrightarrow x=1\)

22 tháng 9 2018

\(DK:x\ge\frac{2018}{2019}\)

\(PT\Leftrightarrow x^2-2x+1+2019x-2018-2\sqrt{2019x-2018}+1=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(\sqrt{2019x-2018}-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(\sqrt{2019x-2018}-1\right)^2=0\end{cases}}\Leftrightarrow x=1\left(TM\right)\)

16 tháng 10 2017

từ a+b=3 => b=3-a

mặt khác: \(a^3-b^2=-3\)

=>\(a^3-\left(3-a\right)^2+3=0\)

\(\Rightarrow a^3-9+6a-a^2+3=0\)

\(\Rightarrow a^3-a^2+6a-6=0\)

\(\Rightarrow a^2\left(a-1\right)+6\left(a-1\right)=0\)

\(\Rightarrow\left(a^2+6\right)\left(a-1\right)=0\)

\(\Rightarrow\hept{\begin{cases}a^2+6=0\\a-1=0\end{cases}\Rightarrow\hept{\begin{cases}a^2=-6\\a=1\end{cases}}}\)

=>a=1 vì \(a^2\ge0\)

=>\(\sqrt[3]{x-2}=1\)

\(\Rightarrow x-2=1\Rightarrow x=3\)

Vậy x=3

16 tháng 10 2017

b) ta có: Đặt :\(\sqrt[3]{x-2}=a;\)    Đk: \(x\ge-1\)

                \(\sqrt{x+1}=b;b\ge0\)

ta có:\(\hept{\begin{cases}a+b=3\\a^3-b^2=-3\end{cases}}\)

đến đây dùng pp thế là đc rồi nhé!

2 tháng 1 2018

theo em là A=B

em mới học lớp 5 thôi chưa chắc đúng đâu

2017=2017

2018 hơn 2016 là 2 đơn vị

2017 lớn hơn 2016 là 1 đơn vị

2017 lớn hơn 2016 1 đơn vị

A hơn B số đăn vị là:

2-(1+1)=0

Nên A=B

2 tháng 1 2018

thanks em nha anh sẽ xem lại

Ai có kết quả nữa thì giúp mình nha