Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{4-3x}{5}-\frac{4-x}{10}=\frac{x+2}{2}\)
\(\frac{8-6x-4+x}{10}=\frac{5x+10}{10}\)
\(4-5x=5x+10\)
\(4-5x-5x-10=0\)
\(-6-10x=0\)
\(\Rightarrow x=\frac{-3}{5}\)
Vậy....
\(\frac{4-3x}{5}-\frac{4-x}{10}=\frac{x+2}{2}\)
\(\Leftrightarrow\)\(\frac{2.\left(4-3x\right)}{10}-\frac{4-x}{10}=\frac{5.\left(x+2\right)}{10}\)
\(\Rightarrow\) 2.( 4 - 3x ) - 4 + x = 5.( x + 2 )
\(\Leftrightarrow\)8 - 6x - 4+ x = 5x + `10
\(\Leftrightarrow\)-6x + x - 5x = -8 + 4 + 10
\(\Leftrightarrow\) -10x = 6
\(\Leftrightarrow\)\(x=\frac{-3}{5}\)
Vậy phương trình có nghiệm là: \(x=\frac{-3}{5}\)
b ) \(\frac{x+1}{2009}+\frac{x+2}{2008}=\frac{x+2007}{3}+\frac{x+2006}{4}\)
\(\Leftrightarrow\) \(\frac{x+1}{2009}+1+\frac{x+2}{2008}+1\)\(=\frac{x+2007}{3}+1+\frac{x+2006}{4}+1\)
\(\Leftrightarrow\)\(\frac{x+1}{2009}+\frac{2009}{2009}+\frac{x+2}{2008}+\frac{2008}{2008}\)\(=\frac{x+2007}{3}+\frac{3}{3}+\frac{x+2006}{4}+\frac{4}{4}\)
\(\Leftrightarrow\)\(\frac{x+2010}{2009}+\frac{x+2010}{2008}=\frac{x+2010}{3}+\frac{x+2006}{4}\)
\(\Leftrightarrow\)\(\frac{x+2010}{2009}+\frac{x+2010}{2008}-\frac{x+2010}{3}-\frac{x+2010}{4}=0\)
\(\Leftrightarrow\)\(\left(x+2010\right).\left(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{3}-\frac{1}{4}\right)=0\)
\(\Leftrightarrow\)\(x+2010=0\) ( Vì \(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{3}-\frac{1}{4}\ne0\))
\(\Leftrightarrow\) \(x=-2010\)
Vậy phương trình có nghiệm là: x = -2010
a)\(\frac{2-x}{2007}-1=\frac{1-x}{2008}-\frac{x}{2009}\)
\(\Leftrightarrow\frac{2-x}{2007}-1+2=\frac{1-x}{2008}+1-\frac{x}{2009}+1\)
\(\Leftrightarrow\frac{2-x}{2007}+\frac{2007}{2007}=\frac{1-x}{2008}+\frac{2008}{2008}-\frac{x}{2009}+\frac{2009}{2009}\)
\(\Leftrightarrow\frac{2009-x}{2007}=\frac{2009-x}{2008}-\frac{2009-x}{2009}\)
\(\Leftrightarrow\frac{2009-x}{2007}-\frac{2009-x}{2008}+\frac{2009-x}{2009}=0\)
\(\Leftrightarrow\left(2009-x\right)\left(\frac{1}{2007}-\frac{1}{2008}+\frac{1}{2009}\right)=0\)
\(\Leftrightarrow2009-x=0\).Do \(\frac{1}{2007}-\frac{1}{2008}+\frac{1}{2009}\ne0\)
\(\Leftrightarrow x=2009\)
b)\(\left(12x+7\right)^2\left(3x+2\right)\left(2x+1\right)=3\)
\(\Leftrightarrow\left(12^2x^2+2\cdot12\cdot7x+7^2\right)\left(6x^2+7x+2\right)-3=0\)
\(\Leftrightarrow\left[24\left(6x^2+7x+2\right)+1\right]\left(6x^2+7x+2\right)-3=0\)
Đặt \(t=6x^2+7x+2\) ta có:
\(\left(24t+1\right)t-3=0\)\(\Leftrightarrow12t^2+t-3=0\)
Suy ra t rồi tìm đc x
\(\frac{x+1}{2010}+\frac{x+2}{2009}+\frac{x+3}{2008}+...+\frac{x+2010}{1}=\left(-2010\right)\)
\(\Rightarrow\left(\frac{x+1}{2010}+1\right)+\left(\frac{x+2}{2009}+1\right)+...+\left(\frac{x+2010}{1}+1\right)=-2010+2010\)
\(\Rightarrow\frac{x+2011}{2010}+\frac{x+2011}{2009}+...+\frac{x+2011}{1}=0\)
\(\Rightarrow\left(x+2011\right)\left(1+\frac{1}{2}+...+\frac{1}{2009}+\frac{1}{2010}\right)=0\)
\(\Rightarrow x+2011=0\Leftrightarrow x=-2011\)
\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)
\(\Leftrightarrow\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}+3=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}+3\)
\(\Leftrightarrow\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)=\left(\frac{x+4}{2005}+1\right)\)
\(+\left(\frac{x+5}{2004}+1\right)+\left(\frac{x+6}{2003}+1\right)\)
\(\Leftrightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}=\frac{x+2009}{2005}+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)
\(\Leftrightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}-\frac{x+2009}{2005}-\frac{x+2009}{2004}-\frac{x+2009}{2003}=0\)
\(\Leftrightarrow\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)=0\)(1)
Vì \(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\ne0\)(2)
Từ (1) và (2) \(\Rightarrow x+2009=0\)\(\Rightarrow x=-2009\)
Vậy \(x=-2009\)
\(\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)
\(\Leftrightarrow\) \(\left(\frac{x-1}{2009}-1\right)+\left(\frac{x-2}{2008}-1\right)=\left(\frac{x-3}{2007}-1\right)+\left(\frac{x-4}{2006}-1\right)\)
\(\Leftrightarrow\) \(\frac{x-2010}{2009}+\frac{x-2010}{2008}=\frac{x-2010}{2007}+\frac{x-2010}{2006}\)
\(\Leftrightarrow\) \(\left(x-2010\right)\left(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}\right)=0\)'
Vì \(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}\ne0\) nên \(x-2010=0\) \(\Leftrightarrow\) \(x=2010\)
Vậy, tập nghiệm của pt là \(S=\left\{2010\right\}\)
phương trình đã cho tương đương vs phg trình
2 -x/2007 +1 = ( 1-x/2008 +1) - ( x/2009 -1)
<=> 2009 -x/2007 = 2009 -x/2008 + 2009 -x/2009
<=> (2009 -x)( 1/2008 + 1/2009 - 1/2007) =0
<=> x =2009
Ta có: \(\frac{2-x}{2007}-1=\frac{1-x}{2008}-\frac{x}{2009}\)
=>\(\frac{2-x}{2007}=\frac{1-x}{2008}-\frac{x}{2009}+1\)
=>\(\frac{2-x}{2007}=\left(\frac{1-x}{2008}+1\right)-\frac{x}{2009}+1-1\)
=>\(\frac{2-x}{2007}+1=\frac{1-x+2008}{2008}+\left(1-\frac{x}{2009}\right)\)
=>\(\frac{2-x+2007}{2007}=\frac{2009-x}{2008}+\frac{2009-x}{2009}\)
=>\(\frac{2009-x}{2007}=\frac{2009-x}{2008}+\frac{2009-x}{2009}\)
=>\(\frac{2009-x}{2007}-\frac{2009-x}{2008}-\frac{2009-x}{2009}=0\)
=>\(\left(2009-x\right).\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)=0\)
Vì \(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\ne0\)
=>2009-x=-
=>x=2009
Vậy tập nghiệm của phương trình S=2009
Lê Chí Cường nhầm đoạn cuối rồi kìa