K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 12 2020

ĐKXĐ: \(x\ge\dfrac{2}{3}\)

\(\Leftrightarrow2\sqrt{x}+2\sqrt{3x-2}=2x^2+2\)

\(\Leftrightarrow2\left(x^2-2x+1\right)+\left(3x-1-2\sqrt{3x-2}\right)+\left(x+1-2\sqrt{x}\right)=0\)

\(\Leftrightarrow2\left(x^2-2x+1\right)+\dfrac{9\left(x^2-2x+1\right)}{3x-1+2\sqrt{3x-2}}+\dfrac{x^2-2x+1}{x+1+2\sqrt{x}}=0\)

\(\Leftrightarrow...\)

6 tháng 7 2017

\(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3\left(x^2-x-1\right)}-\sqrt{x^2-3x+4}\)

\(\Leftrightarrow\left(\sqrt{3x^2-5x+1}-\sqrt{3}\right)-\left(\sqrt{x^2-2}-\sqrt{2}\right)=\left(\sqrt{3\left(x^2-x-1\right)}-\sqrt{3}\right)-\left(\sqrt{x^2-3x+4}-\sqrt{2}\right)\)

\(\Leftrightarrow\frac{3x^2-5x+1-3}{\sqrt{3x^2-5x+1}+\sqrt{3}}-\frac{x^2-2-2}{\sqrt{x^2-2}+\sqrt{2}}=\frac{3\left(x^2-x-1\right)-3}{\sqrt{3\left(x^2-x-1\right)}+\sqrt{3}}-\frac{x^2-3x+4-2}{\sqrt{x^2-3x+4}+\sqrt{2}}\)

\(\Leftrightarrow\frac{3x^2-5x-2}{\sqrt{3x^2-5x+1}+\sqrt{3}}-\frac{x^2-4}{\sqrt{x^2-2}+\sqrt{2}}-\frac{3x^2-3x-6}{\sqrt{3\left(x^2-x-1\right)}+\sqrt{3}}+\frac{x^2-3x+2}{\sqrt{x^2-3x+4}+\sqrt{2}}=0\)

\(\Leftrightarrow\frac{\left(x-2\right)\left(3x+1\right)}{\sqrt{3x^2-5x+1}+\sqrt{3}}-\frac{\left(x-2\right)\left(x+2\right)}{\sqrt{x^2-2}+\sqrt{2}}-\frac{3\left(x-2\right)\left(x+1\right)}{\sqrt{3\left(x^2-x-1\right)}+\sqrt{3}}+\frac{\left(x-1\right)\left(x-2\right)}{\sqrt{x^2-3x+4}+\sqrt{2}}=0\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{3x+1}{\sqrt{3x^2-5x+1}+\sqrt{3}}-\frac{x+2}{\sqrt{x^2-2}+\sqrt{2}}-\frac{3\left(x+1\right)}{\sqrt{3\left(x^2-x-1\right)}+\sqrt{3}}+\frac{x-1}{\sqrt{x^2-3x+4}+\sqrt{2}}\right)=0\)

Dễ thấy: \(\frac{3x+1}{\sqrt{3x^2-5x+1}+\sqrt{3}}-\frac{x+2}{\sqrt{x^2-2}+\sqrt{2}}-\frac{3\left(x+1\right)}{\sqrt{3\left(x^2-x-1\right)}+\sqrt{3}}+\frac{x-1}{\sqrt{x^2-3x+4}+\sqrt{2}}=0\) vô nghiệm

\(\Rightarrow x-2=0\Rightarrow x=2\)

15 tháng 7 2017

sao cái từ "dễ thấy" nó khó thấy quá v 

31 tháng 10 2016

Bài 1:

Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:

\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)

\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc

\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)

1 tháng 11 2016

Câu 3: ĐK: \(x\ge0\)

Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)

Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)

\(\Rightarrow2x-4\sqrt{x-1}=0\)

Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)

12 tháng 12 2016

cái 1 thêm đk nữa quên mất

2, bình phương 2 vế luôn ( có điều kiện nữa vào)

đc 2\(\sqrt{\left(1-x\right)\left(x+4\right)}\)=9-5=4

\(\sqrt{\left(1-x\right)\left(x+4\right)}\)=2

(1-x)(x+4)=4

=>x=0;-3

12 tháng 12 2016

1 chuyển vế bình phương đc

3x+7=4+4*sqrt(x+1) + x+1

2x+2=4*sqrt(x+1)

x+1-2*sqrt(x+1)+1=1 (thêm +1 vào 2 vế)

(sqrt(x+1)-1)^2=1

chia 2 trường hợp 1 là sqrt(x+1)-1=1=>x=3

          trường hớp 2 là  sqrt(x+1)-1=-1=>x=-1

6 tháng 11 2017

Câu 1: Ta có

 \(\sqrt{x}=\sqrt{17-12\sqrt{2}}=\sqrt{9-2.3.2\sqrt{2}+\left(2\sqrt{2}\right)^2}=\sqrt{\left(3-2\sqrt{2}\right)^2}=3-2\sqrt{2}\)

Vậy thì \(f\left(x\right)=\frac{1-3+2\sqrt{2}+17-2\sqrt{2}}{3-2\sqrt{2}}=\frac{15}{3-2\sqrt{2}}=45+30\sqrt{2}\)

Câu 2: ĐK: \(0\le x\le1\)

\(pt\Leftrightarrow\sqrt{3x\left(x+1\right)}+\sqrt{x\left(1-x\right)}=2x+1\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{3x+3}+\sqrt{1-x}\right)=\frac{1}{2}\left(4x+2\right)\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{3x+3}+\sqrt{1-x}\right)=\frac{1}{2}\left[\left(3x+3\right)-\left(1-x\right)\right]\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{3x+3}+\sqrt{1-x}\right)=\frac{1}{2}\left(\sqrt{3x+3}+\sqrt{1-x}\right)\left(\sqrt{3x+3}-\sqrt{1-x}\right)\)

\(\Leftrightarrow\left(\sqrt{3x+3}+\sqrt{1-x}\right)\left[\sqrt{x}-\frac{1}{2}\left(\sqrt{3x+3}-\sqrt{1-x}\right)\right]=0\)

TH1: \(\sqrt{3x+3}+\sqrt{1-x}=0\Leftrightarrow\hept{\begin{cases}3x+3=0\\1-x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\x=1\end{cases}}\) (Vô lý)

TH2: \(2\sqrt{x}-\sqrt{3x+3}+\sqrt{1-x}=0\)

\(\Leftrightarrow2\sqrt{x}+\sqrt{1-x}=\sqrt{3x+3}\Leftrightarrow4x+1-x+4\sqrt{x\left(1-x\right)}=3x+3\)

\(\Leftrightarrow4\sqrt{x\left(1-x\right)}=2\Leftrightarrow x=\frac{1}{2}\left(tm\right)\)

Vậy phương trình có nghiệm \(x=\frac{1}{2}\)

18 tháng 6 2019

\(2x^3-x^2+\sqrt[3]{2x^3-3x+1}=3x+1+\sqrt[3]{x^2+2}.\)

\(\Leftrightarrow\left(2x^3-3x+1\right)-\left(x^2+2\right)+\sqrt[3]{2x^2-3x+1}-\sqrt[3]{x^2+2}=0\)(*)

Đặt \(\sqrt[3]{2x^3-3x+1}=a\Rightarrow2x^3-3x+1=a^3\)\(\sqrt[3]{x^2+2}=b\Rightarrow b^3=x^2+2\)

Khi đó: (*) \(\Leftrightarrow a^3-b^3+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)

\(\Rightarrow a-b=0\)( Vì: \(a^2+ab+b^2+1=\left(a+\frac{b}{2}\right)^2+\frac{3}{4}b^2+1>0\))

\(\Leftrightarrow a=b\)hay \(\sqrt[3]{2x^3-3x+1}=\sqrt[3]{x^2+2}\)

\(\Leftrightarrow2x^3-3x+1=x^2+2\Leftrightarrow\left(2x^3+x^2\right)-\left(2x^2+x\right)-\left(2x+1\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(x^2-x-1\right)=0\Leftrightarrow\orbr{\begin{cases}2x+1=0\left(1\right)\\x^2-x-1=0\left(2\right)\end{cases}}\)

Giải (1)ta được \(x=-\frac{1}{2}\)

Giải (2) ta có: \(x^2-x-1=0\Leftrightarrow\left(x-\frac{1}{2}\right)^2=\frac{5}{4}\Leftrightarrow\orbr{\begin{cases}x-\frac{1}{2}=\frac{\sqrt{5}}{2}\\x-\frac{1}{2}=-\frac{\sqrt{5}}{2}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{\sqrt{5}+1}{2}\\x=\frac{-\sqrt{5}+1}{2}\end{cases}}\)

Vậy tập nghiệm của phương trình đã cho là: \(S=\left\{-\frac{1}{2};\frac{\sqrt{5}+1}{2};\frac{-\sqrt{5}+1}{2}\right\}.\)